Записи с меткой «самая»

Юпитер

http://img-fotki.yandex.ru/get/11/kolodar.4/0_6306_c7e0a195_XL

ЮПИТЕР (астрологический знак G), пятая планета от Солнца и самая большая планета-гигант Солнечной системы. Его экваториальный диаметр равен 143884 км, что в 11,209 раз превышает диаметр Земли и составляет 0,103 диаметра Солнца. Форма Юпитера не совсем сферическая, поскольку планета состоит из газа и жидкости и быстро вращается. Полярный диаметр Юпитера равен 133708 км. По объему Юпитер эквивалентен 1319 объемам Земли. Для наблюдателя с Земли это вторая по яркости планета после Венеры. Среднее расстояние от Солнца 5,2 а. е. (778,3 млн. км, минимальное  4,95 а. е., максимальное — 5,45 а. е.), сидерический период обращения 11,9 года, период вращения (облачного слоя близ экватора) около 10 часов. Юпитер движется вокруг Солнца по близкой к круговой эллиптической орбите, плоскость которой наклонена к плоскости эклиптики под углом 1°18,3'. Экватор наклонен к плоскости орбиты под углом 3°5'; из-за малости этого угла сезонные изменения на Юпитере выражены весьма слабо. Расстояние Юпитера от Земли меняется в пределах от 188 до 967 млн. км. Масса Юпитера в 317,8 раз превосходит массу Земли и в 2,5 раза больше массы всех остальных планет, вместе взятых, но при этом средняя плотность равна 1,33 г/см3, то есть в 4 раза меньше, чем у Земли. В противостоянии Юпитер виден как чуть желтоватая звезда -2,6 звездной величины; из всех планет уступает в блеске только Венере и Марсу во время великого противостояния последнего.

СТРОЕНИЕ. Юпитер представляет собой гигантский газовый шар, диаметр которого в десять раз превышает диаметр Земли, составляя одну десятую диаметра Солнца. Его масса равна 0,1% массы Солнца, а химический состав (по числу молекул) очень близок к составу Солнца: 90% водорода (находящегося на Юпитере в молекулярной форме) и 10% гелия (в «солнечной» пропорции 3,4 : 1). Среди следовых газов наиболее существенны водяной пар, метан и аммиак. Под слоем облаков нет никакой твердой поверхности. Вместо этого ниже внешних слоев наблюдается (при увеличении давления с глубиной) постепенный переход от газа к жидкости (водно-аммиачной жидкой оболочкой). Затем следует резкий переход к металлической жидкости, в которой атомы лишены электронов. Радиус этого ядра порядка 1/10 радиуса планеты, масса ~ 0,3-0,4 ее массы, температура около 25000 К при давлении ~ 8000ГПа. Наличие источника внутренней энергии (тепло выделяется в результате медленного гравитационного сжатия Юпитера) позволяет планете излучать в 1,5 - 2 раза больше тепла, чем она получает от Солнца.

АТМОСФЕРА. При визуальных наблюдениях диск Юпитера кажется пересеченным чередующимися светлыми зонами и темными поясами. Состав атмосферы: H2, CH4, NH3, He. Согласно данным, полученным четырьмя космическими зондами, пролетевшими мимо Юпитера в 1973 - 1981гг ("Пионер-10 и -11", "Вояджер-1 и -2"), и АМС "Галилео", работающей на орбите планеты с 1995г, внутри этих полос наблюдается очень сложная система потоков. В каждом полушарии имеется пять или шесть таких полос, по направлению совпадающих с ветровыми течениями, вращающиеся вокруг оси планеты с различными угловыми скоростями. Быстрее всего вращается экваториальная зона — период ее обращения 9 ч 50 мин 30 с, что на 5 мин 11с меньше периода обращения полярных зон. Так быстро не вращается ни одна другая планета Солнечной системы. На Юпитере атмосферные процессы намного стабильнее чем на Земле. Пояса облаков на Юпитере сохраняются годами и вращаются вокруг планеты со скоростью 480 км/ч. Штормы, перед которыми земные ураганы покажутся лишь легким ветерком, могут бушевать десятилетиями. Активный облачный слой довольно тонок и составляет  сотую долю радиуса планеты. Относительно долговечными деталями планеты являются белые или цветные овалы.

Наиболее известная и самая заметная из таких деталей - Большое Красное Пятно, которое наблюдается уже около 300 лет. Находясь в умеренных южных широтах Юпитера оно медленно перемещается, делая за сто лет примерно 3 оборота.  По краям Красного Пятна располагаются облака, состоящие из аммиака. По предыдущим наблюдениям космической станцией Galileo, также принадлежащей NASA, граничные области Большого Красного Пятна вращаются с большой скоростью против часовой стрелки, в то время как внутренняя часть медленно вращается в противоположном направлении. За последнее время Большое Красное Пятно несколько изменилось. На фотографиях, полученных ранее космическими кораблями NASA Voyager и Galileo, Пятно окружает темная область, что указывает на отсутствие облаков вокруг него. Теперь же эту область заполнили светлые аммиачные облака.

http://forum.openarmenia.com/uploads/post-85-1234368273.jpg

Последние исследования показывают что, чем дальше планета от Солнца, тем менее турбулентная ее атмосфера, тем менее интенсивно происходит теплообмен между соседними областями и рассеивается меньше энергии. В тонкой атмосфере больших планет физические процессы таковы, что энергия из отдельных мелких областей переносится в более крупные и скапливается затем в глобальные воздушные структуры - зональные потоки. Эти потоки и являются поясами облаков, которые можно разглядеть даже в небольшой телескоп. Соседние потоки движутся в противоположных направлениях. Их цвет может слегка отличаться в зависимости от химического состава. Цветные облака находятся в самых высоких слоях Юпитера (их глубина составляет около 0,1-0,3% радиуса планеты). Происхождение их окраски остается тайной, хотя, по-видимому, можно утверждать, что она связана со следовыми составляющими атмосферы и свидетельствует о происходящих в ней сложных химических процессах. На основе исследования в конце 2000г зондом Cassini выяснено, что светлые полосы и Большое Красное Пятно (гигантский шторм с размером большой оси около 35 тыс. км, а малой оси - 14 тыс. км) связаны с нисходящими потоками (вертикальная циркуляция атмосферных масс); облака здесь выше, а температура ниже, чем в остальных областях. Цвет облаков коррелирует с высотой: синие структуры - самые верхние, под ними лежат коричневые, затем белые. Красные структуры - самые низкие. Красноватый оттенок планеты приписывают главным образом присутствию в атмосфере красного фосфора и, возможно, органике, возникающей благодаря электрическим разрядам. В области, где давление порядка 100 КПа, температура составляет около 160 К. В атмосфере Юпитера замечены грозы. Температура верхних облаков составляет –130оС. Юпитер выделяет на 60% больше энергии, чем получает от Солнца. Атмосфера отражает 45% падающего солнечного света. Установлено также наличие ионосферы, протяженность которой по высоте — порядка 3000 км.

Зонд с АМС "Галилео" в 1995г парашютировал сквозь верхние слои атмосферы Юпитера, опустившись на 150 км вглубь атмосферы, передавая данные относительно состава и физических условий среды. Наземные наблюдения места вхождения зонда показали, что оно, по-видимому, было относительно свободно от облаков. Этим можно объяснить, почему не было получено почти никаких подтверждений существования ожидаемых трех слоев облаков (состоящих на самых больших высотах из кристаллов аммиака, гидросульфида аммония в середине, а внизу - из водяных и ледяных кристаллов). Скорость ветра, достигающая 530 км/час, оказалась даже больше, чем ожидалось. В то же время содержание гелия составило только около половины ожидаемого. Вероятное объяснение этого явления - увеличение концентрации гелия к центру планеты.

В 1997г космический телескоп Hubble впервые обнаружил Большое Темное пятно возле северного полюса планеты. В конце 2000г зонд Cassini с 1 октября по 15 декабря фотографировал пятно во всех подробностях с помощью УФ-камеры. В течение 11 недель это пятно росло в размерах до вдвое превышающее Землю, закручивалось, темнело и меняло форму. Потом, когда зонд Cassini стал удаляться от Юпитера пятно стало бледнеть. По мнению специалистов, Темное пятно на Юпитере может быть относительно кратковременным "облачным" явлением, поэтому телескоп Hubble и видел его лишь однажды. И если бы Cassini пролетал мимо Юпитера на месяц или два позже, то он, может быть, не увидел бы никакого пятна. Есть и другое мнение. Возможно Темное пятно является каким-то побочным эффектом полярных сияний на Юпитере. Там они в сотни и тысячи раз ярче, чем на Земле, ведь магнитное поле Юпитера намного сильнее земного, а сам Юпитер является мощным источником электронов и ионов (для земных полярных сияний заряженные частицы поставляет Солнце).

МАГНИТНОЕ ПОЛЕ И РАДИОИЗЛУЧЕНИЕ.

Радиоизлучение Юпитера, обнаруженное в 1955г, послужило первым признаком наличия у него сильного магнитного поля, которое в 4000 раз сильнее земного. Его магнитный дипольный момент почти в 12000 раз превосходит дипольный момент Земли, но так как напряженность магнитного поля обратно пропорциональна кубу радиуса, а он у Юпитера на два порядка больше, чем у Земли, то напряженность у поверхности Юпитера выше, по сравнению с Землей, только в 5-6 раз. Магнитная ось наклонена к оси вращения на (10,2 ± 0,6)°. Дипольная структура магнитного поля доминирует до расстояний порядка 15 радиусов планеты. Юпитер обладает обширной магнитосферой, которая подобна земной, но увеличена примерно в 100 раз. Закручивание электронов вокруг силовых линий порождает радиоизлучение, причем задержанные около планеты электроны дают синхротронное излучение в диапазоне дециметровых волн. Декаметровое излучение, наблюдаемое только от некоторых областей планеты, связано с взаимодействием ионосферы Юпитера со спутником Ио, орбита которого проходит внутри огромного плазменного тора. Это взаимодействие порождает также полярные сияния. Обнаруженное "Вояджерами" излучение в километровых длинах волн возникает в высоких широтах планеты и в плазменном торе.

Зонд обнаружил также интенсивный радиационный пояс.

Наблюдая 18 декабря 2000 года в течение 10 часов, удалось обнаружить пульсирующий источник рентгеновского излучения в полярных районах верхних слоев атмосферы Юпитера с помощью оборудования орбитального телескопа "Chandra". Вспыхивает наподобие маяка каждый 45 минут. Никакие из существующих ныне теорий не могут объяснить ни природу возникновения излучения, ни его пульсирующий характер.

Открыты таинственные следы, оставляемых ближайшим к Юпитеру крупным спутником, Ио, в ионосфере планеты - в области, расположенной над атмосферой, в которой и образуются полярные сияния. Удалось также обнаружить, что два других галилеевых спутника - Ганимед и Европа - также оставляют подобные "магнитные следы" овальной формы, хотя и меньшие по интенсивности. О том, что Ио, знаменитый своей исключительной вулканической активностью, оставляет подобные следы, ученым было известно и ранее. Удивительным оказалось то, что такие же следы оставляют и два других спутника, на которых вулканической деятельности не зафиксировано. Вопрос о том, "чертит" ли в магнитосфере Юпитера и свой след последний из крупных спутников планеты - Каллисто - останется, по всей видимости, загадкой еще на многие годы. Зонд для исследования Плутона, вопрос о целесообразности отправки которого изучается в настоящее время, должен пролететь по пути к цели назначения мимо Юпитера и тем самым дать шанс продолжить изучение планеты. Однако финансирование этой интереснейшей исследовательской программы все еще остается под вопросом.

http://www.vokrugsveta.ru/img/cmn/2006/11/20/001.jpg

СПУТНИКИ И КОЛЬЦА ПЛАНЕТЫ.

Первые четыре спутника (Ио, Европа, Ганимед, Каллисто) были открыты Г. Галилеем еще в 1610г. Это открытие послужило мощным толчком к утверждению гелиоцентрической системы мира Коперника, явившись яркой моделью этой системы. После пролета "Вояджеров" к 1980г стало известно шестнадцать естественных спутников, вращающихся вокруг Юпитера. Они разделяются на четыре группы. По круговым орбитам в экваториальной плоскости движутся четыре маленьких внутренних спутника (Метида, Адрастея, Амальтея и Теба) и четыре больших галилеевых спутника (Ио, Европа, Ганимед и Каллисто). Третья группа (Леда, Гималия, Лиситея и Элара) - маленькие спутники на круговых орбитах, наклоненных под углом 25° - 29° к экваториальной плоскости и лежащих на расстоянии 11 - 12 млн. км от Юпитера. Внешняя группа (Ананке, Карме, Пасифе и Синопе - названы по именам возлюбленных Юпитера) - маленькие спутники с обратным движением по орбитам. Эти орбиты являются относительно вытянутыми эллипсами с существенным наклонением к экваториальной плоскости и лежат на расстоянии 21 - 24 млн. км от Юпитера. Полагают, что это захваченные планетой астероиды. Четыре галилеевых спутника и их движения по орбите можно легко увидеть в маленький телескоп или бинокль. К концу 2000 года было открыто 10 небольших спутников и общее количество спутников Юпитера стало 28. В конце ноября - начале декабря 2000 года профессором Дэвидом Джевиттом (David Jewitt) и аспирантом С.Шеппардом (S. Sheppard) из Гавайского университета, которые вели наблюдения с помощью камеры 2,2-метрового телескопа на горе Мауна Кеа. Девять лун находятся на расстоянии 21-24млн. км от планеты и  вращаются в обратном направлении по вытянутым эллиптическим орбитам с наклонением от 15о до 30о, а одна на удалении 13млн. км  и вращается в прямом направлении. Эта же команда в 2001-2003гг ( к 1 июня2003г) довела общее число открытых спутников до 61. Это небольшие луны до 4 км в диаметре по видимому захваченные Юпитером уже позже.

Предположение о существовании слабого кольца вокруг Юпитера было впервые высказано на основании данных, полученных "Пионером-11" в 1974г. После проведенного "Вояджером" непосредственного фотографирования это предположение подтвердилось. Огромного плоского кольца из пыли и некрупных камней, которое при ширине в 6 км и толщине в 1 км простирается до десятков тыс. км от верхней границы облаков. Основная часть кольца лежит на расстоянии 1,72 - 1,81 радиуса от центра планеты. Исходя из характеристик кольца можно допустить, что оно состоит, главным образом, из частиц микронных размеров. Постоянным источником пополнения кольца могут быть движущиеся по орбите объекты размером с булыжник, постоянно бомбардируемые быстрыми частицами, а также спутники планеты.

В результате обработки данных, полученные аппаратом Cassini во время пролета мимо Юпитера в конце 2000 - начале 2001 года, ученые университета имени Джонса Хопкинса в Мэриленде пришли к выводу, что вокруг Юпитера существует  гигантское кольцо водного пара.  Водяной пар появился вокруг планеты в результате постоянных бомбардировок микрометеоритами ледяной поверхности Европы, одного из крупнейших спутников Юпитера.

Характеристики планеты Юпитер

Средняя удаленность планеты от Солнца (а.е.) 5,2028  (778330000км)
Эксцентриситет орбиты 0,0483
Наклон орбиты к плоскости эклиптики (градусы) 1,308
Орбитальная скорость (км/с) 13,06
Сидерический период обращения планеты (лет) 11,8623 (4332,71 дней)
Синодический период (дней) 398,88
Максимальная видимая звездная величина -2,59
Общая массаa 1047,355
Массаb (Земля=1) 317,938
Массаb (килограмм) 1,900×1027
Экваториальный радиусf (Земля=1) 11,209
Экваториальный радиус (км)f 71492
Сжатиеc 0,0649
Средняя плотность (г/см3) 1,33
Ускорение силы тяжести на экваторе (м/с2) 22,88
Вторая космическая скорость на экваторе (км/с) 59,6
Сидерический период вращения (часов) 9,841
Период обращения вокруг оси (часов) 9,925
Наклонение экватора к орбите (градусы) 3,12
Число открытых спутников 61

aОтношение массы Солнца к массе планеты (включая атмосферу и массу спутников).
bБез учета массы спутников.
cСжатие равно (Re-Rp)/Re, где Re и Rp - экваториальный и полярный радиусы планет (соответственно).
dЗначения в скобках могут отличаться более чем на 10 процентов.
fДля внешних планет не имеющих твердой поверхности радиус соответствует уровню атмосферного давления в 1 бар.

Спутники Юпитера

На сегодняшний день учёным известны 63 спутника Юпитера; это наибольшее число открытых спутников среди всех планет Солнечной системы. Кроме того, у Юпитера есть система колец.

В 1610 году Галилео Галилей, наблюдая Юпитер в телескоп, открыл четыре наиболее крупных спутника — Ио, Европа, Ганимед и Каллисто, которые сейчас носят название «галилеевых». Они ярки и вращаются по достаточно удалённым от планеты орбитам, так что их легко различить даже в полевой бинокль. Первенство в открытии спутников оспаривал также немецкий астроном Симон Мариус, который позднее дал им названия, взяв имена из древнегреческих мифов.

Благодаря наземным наблюдениям системы Юпитера, к концу 1970-х годов было известно уже 13 спутников. В 1979 году, совершая пролёт мимо Юпитера, космический аппарат «Вояджер-1» обнаружил ещё три спутника.

Начиная с 1999 года, с помощью наземных телескопов нового поколения были открыты ещё 47 спутников Юпитера, подавляющее большинство из которых имеют диаметр в 2—4 километра.

Меркурий

524609585

Ближайшей к Солнцу  планетой Солнечной системы и самой маленькой из планет земной группы не имеющая спутников, является  Меркурий. Вести телескопические наблюдения Меркурия с Земли чрезвычайно затруднены, частично из-за его небольшого размера, а частично из-за того, что  он не отходит от Солнца больше чем на 28°, потому, что его орбита лежит далеко внутри орбиты Земли. Из-за этого же  диск Меркурия (подобно Венере, другой нижней планете) показывает цикл фаз, анологичных фазам Луны. До пролетов иследовательских спутников "Маринера-10" в 1974 и 1975гг о  деталях поверхностни Меркурия и о самой планете было очень мало известно . "Маринер-10" был выведен на такую орбиту вокруг Солнца, что до того, как были израсходованы необходимые для позиционного управления запасы топлива, он встретился с Меркурием три раза и передал более 10000 изображений с лучшим разрешением до 100м. Переданные на Землю изображения позволили составить карту, охватывающую около 35% поверхности Меркурия. Это единственный КА исследовавший непосредственно Меркурий.   На март 2004 года запланирован пуск в сторону Меркурия американского межпланетного зонда "MESSENGER" (MErcury Surface, Space ENvironment, GEochemistry, and Ranging - исследования поверхности Меркурия, окружающего его космического пространства, геохимической структуры и картографирование).
"MESSENGER" станет первым земным аппаратом, который будет исследовать ближайшую к Солнцу планету с орбиты искусственного спутника. График полета зонда предусматривает два пролета мимо Меркурия (в 2007 и в 2008 годах) и выход на его орбиту в 2009 году. Затем он в течение года будет передавать на Землю научную информацию, после чего срок работы с ним будет продлен, если позволит состояние бортового оборудования.

0_dc65_a7316d14_XLМеркурий движется вокруг Солнца по сильно вытянутой эллиптической орбите, плоскость которой наклонена к плоскости эклиптики под углом 7°00'15". Расстояние Меркурия от Солнца меняется от 46,08 млн. км до 68,86 млн. км. Период обращения вокруг Солнца (меркурианский год) составляет 87,97 земных суток, а средний интервал между одинаковыми фазами (синодический период) 115,9 земных суток. Продолжительность солнечных суток на Меркурии равна 176 земным суткам. Расстояние Меркурия от Земли меняется от 82 до 217 млн. км. Максимальный угловой размер планеты при наблюдении с Земли составляет 13", минимальный — 5". Период обращения Меркурия вокруг своей оси равен 58,6461 ± 0,0005 суток, что составляет 2/3 от периода обращения вокруг Солнца. Это обстоятельство является результатом действия приливного трения и крутящего момента гравитационных сил со стороны Солнца, обусловленного тем, что на Меркурии распределение масс не является строго концентрическим (центр масс смещен по отношению к геометрическому центру планеты, вращение неравномерное, «рывками»). Обращение Меркурия вокруг Солнца и его собственное вращение приводят к тому, что длительность солнечных суток на планете равна трем звездным меркурианским суткам или двум меркурианским годам и составляет около 175,92 земных суток.

48919620_Mariner10tMercuryJHUart600x490

Ось вращения Меркурия наклонена к плоскости его орбиты не более чем на 3°, благодаря чему заметных сезонных изменений на этой планете не должно существовать. Для наблюдений с Земли Меркурий — трудный объект, так как он видимым образом никогда не удаляется от Солнца больше чем на 28°, вследствие чего его приходится наблюдать всегда на фоне вечерней или утренней зари низко над горизонтом. Кроме того, в эту пору фаза планеты (то есть угол при планете между направлениями на Солнце и на Землю) близка к 90°, и наблюдатель видит освещенной лишь половину ее диска.

13 раз в столетие Меркурий проходит по диску Солнца. Это бывает в мае или ноябре, когда нижнее соединение планеты происходит вблизи узлов орбиты Меркурия. Меркурий проецируется на солнечный диск и перемещается по нему с направлении с востока на запад. Ноябрьские прохождения происходят вдвое чаще, чем майские. За период в 46 лет их как правило наблюдается четыре - три раза через 13 и один раз через 7 лет после предыдущего прохождения. Последнее ноябрьское прохождение наблюдалось в 1999 году, а следующее состоится в 2006 году. Более редкие майские лучше наблюдаются в Северном полушарии, то есть в России. За 46 лет как правило наблюдаются два майских прохождения - через 33 года и через 13 лет после предыдущего прохождения. Последнее майское прохождение Меркурия состоялось 9 мая 1970 года, а следующее состоится 7 мая 2003 года и будет полностью хорошо видно в России.

post-7-1204436388

Размеры, форма и масса Меркурия

По форме Меркурий близок к шару с экваториальным радиусом (2439 ± 1) км, что примерно в 2,6 раза меньше, чем у Земли. Разность полуосей экваториального эллипса планеты составляет около 1 км; экваториальное и полярное сжатия незначительны. Отклонения геометрического центра планеты (шара) от центра масс — порядка полутора километров. Площадь поверхности Меркурия в 6,8 раз, а объем — в 17,8 раз меньше, чем у Земли.

Масса Меркурия примерно в 18 раз меньше массы Земли. Средняя плотность близка к земной.

ак ближайшая к Солнцу планета, Меркурий получает от центрального светила значительно большую энергию, чем, например, Земля (в среднем в 10 раз). Из-за вытянутости орбиты поток энергии от Солнца варьируется примерно в два раза. Большая продолжительность дня и ночи приводит к тому, что яркостные температуры (измеряемые по инфракрасному излучению в соответствии с законом теплового излучения Планка) на «дневной» и на «ночной» сторонах поверхности Меркурия при среднем расстоянии от Солнца могут изменяться примерно от 700 К до 100 К (-180оC до +430оС).  При этом температура в полярной области достигает ночью – 210оС, а днем под палящими лучами Солнца в экваториальной зоне + 500оС. Но уже на глубине нескольких десятков сантиметров значительных колебаний температуры нет, что является следствием весьма низкой теплопроводности пород.

Поверхность Меркурия покрыта тысячами кратеров, образовавшихся от столкновений с метеоритами и скал, которые образовались, когда молодое ядро остывало и сжималось, стягивая кору планеты, а также раздробленным веществом базальтового типа, довольно темная. Судя по наблюдениям с Земли и фотографиям с космических аппаратов, она в целом похожа на поверхность Луны, хотя контраст между темными и светлыми участками выражен слабее. Наряду с кратерами (как правило, менее глубокими, чем на Луне) есть холмы и долины.

До 70% изученной области занимает древняя, сильно изрытая кратерами поверхность. Наиболее существенная деталь - равнина Жары (бассейн Калорис), огромный ударный кратер с диаметром 1300 км (четверть диаметра планеты). Впадина была заполнена лавой и относительно сглажена, причем поверхность того же типа захватывает и часть области выброса. Удар произошел 3800 млн. лет назад, вызвав временное оживление вулканический деятельности, которая в основном прекратилась за 100 млн. лет до того. Это и привело к сглаживанию областей внутри и вокруг впадины. В той области поверхности Меркурия, которая диаметрально противоположна месту удара, наблюдается удивительно хаотическое строение, созданное, по-видимому, ударной волной.
Характерные детали, найденные на Меркурии, - изрезанные обрывы (уступы), которые принимают форму утесов высотой от нескольких сотен до 3000 м. Как предполагают, они сформировались при сжатии планетарной коры в процессе охлаждения. В некоторых местах они пересекают стенки кратеров. Радарные наблюдения Меркурия в конце 2001г, показали наличие на его поверхности большого кратера диаметром 85 км. По своему строению он схож с кратером Тихо на поверхности Луны, но может быть значительно моложе, чем лунное образование возрастом 109 миллионов лет.

Атмосфера и физические поля

Над поверхностью Меркурия имеются следы весьма разреженной атмосферы, содержащей, кроме гелия, также водород, углекислый газ, углерод, кислород и благородные газы (аргон, неон). В 1985г в атмосфере обнаружены атомы натрия. Близость Солнца обусловливает ощутимое влияние на Меркурий солнечного ветра. Благодаря этой близости значительно и приливное воздействие Солнца на Меркурий, что должно приводить к возникновению над поверхностью планеты электрического поля, напряженность которого может быть примерно вдвое больше, чем у «поля ясной погоды» над поверхностью Земли, и отличается от последнего сравнительной стабильностью.

На Меркурии имеется и магнитное поле. Магнитный дипольный момент Меркурия равен 4,9 · 1022 Гс·см3, что примерно на четыре порядка меньше, чем у Земли; однако, поскольку напряженности поля обратно пропорциональны кубу радиуса планет, то на Меркурии и на Земле они близкие по порядку величины.

Модель внутреннего строения

Предложено несколько моделей внутреннего строения Меркурия. Согласно наиболее распространенному (хотя и предварительному) мнению планета состоит из горячего, постепенно остывающего железоникелевого ядра и силикатной оболочки, на границе между которыми температура может приближаться к 103 К. На долю ядра приходится больше половины массы планеты (приходится около 70% массы и 75% общего диаметра планеты). Породы содержат около 6% железа, а в основном алюминий и кальций.

СЛОЙ

ТОЛЩИНА

СОСТАВ
Кора - кремниевые породы
Мантия 600 км кремниевые породы
Ядро (радиус) 1800 км железо и никель

Характеристики планеты Меркурий

Средняя удаленность планеты от Солнца (а.е.) - 0,3871 (57910000км)

Эксцентриситет орбиты - 0,2056

Наклон орбиты к плоскости эклиптики (градусы) - 7,004

Средняя орбитальная скорость (км/с) - 47,89

Сидерический период обращения планеты (лет) - 0,24085 (87,969 дней)

Синодический период (дней) - 115,88

Максимальная видимая звездная величина - -2,02

Общая массаa - 6023600

Масса (Земля=1) - 0,0553

Масса (килограмм) - 3,303×1023

Экваториальный радиус (Земля=1) - 0,382

Экваториальный радиус(км) - 2439

Сжатие  с - 0,0

Средняя плотность (г/см3) - 5,44

Ускорение силы тяжести на экваторе (м/с2) - 3,78

Вторая космическая скорость на экваторе (км/с) - 4,3

Сидерический период вращения (вокруг оси) - 58,6561 дня

Наклонение экватора к орбите (градусы) - 2°

Число спутников - нет

a - Отношение массы Солнца к массе планеты (включая атмосферу).
c - Сжатие равно (Re-Rp)/Re, где Re и Rp - экваториальный и полярный радиусы планет (соответственно).

История открытий

Дата Ученый Вид
1530г Н.Коперник Впервые весьма точно вычисляет расстояние от Солнца до Меркурия), в 376 ае.
1631г П. Гассенди 7 ноября впервые астрономы наблюдают прохождение Меркурия по диску Солнца предвычисленное И. Кеплером. Что регулярно повторяется через 13 лет, а иногда и через 7 лет, причем всегда либо в мае, либо в ноябре. Меркурий проходит севернее или южнее солнечного экватора. В наше время смотрите 7 мая 2003г.
1859г У.Ж. Леверье Открыл смещение перигелия планеты и к этому времени разработал теорию ее движения.
1882г Д.В. Скиапарелли Определяет период обращения Меркурия в 88 суток.
1950г О. Дольфюс С помощью поляриметрических исследований доказал, что Меркурий содержит очень разряженную атмосферу.
1965г р-т Аресибо С помощью радиолокации  Гордон Х. Петтенгилл и Ральф Б. Дайсом измерили период обращения Меркурия вокруг оси, получив результат в 58,65 сут.
1974г КА «Маринер-10» В марте впервые КА начал исследование планеты. Произведено фотографирование планеты с расстояния от 233000 до 7340км при сближении 29 марта, а 21 сентября сближение до расстояния 756км, а 16 марта 1975г до расстояния 327км.  Произведено около 4300 снимков, на основании которых составлена карта западного полушария Меркурия. Разрешаемость при третьем сближении составила 100м. Обнаружено магнитное поле в 100 раз слабее земного, подтверждена очень разряженная водородо-гелиевая атмосфера, замерена температура. Обнаружил систему гор и борозд не имеющих ничего общего с лунными и марсианскими.
1977г Ю.Н. Липский Издает каталог кратеров Меркурия.
Архивы
Календарь
Август 2017
Пн Вт Ср Чт Пт Сб Вс
« Фев    
 123456
78910111213
14151617181920
21222324252627
28293031