Записи с меткой «системы»

Астероиды

asteroid-617-patroclus-binary-jupiter-orbit-desk-1024

Астеро́ид — это планетоподобное небольшое небесное тело Солнечной системы, которое движется по орбите вокруг Солнца. Также астероиды, известные как малые планеты,  которые по размерам значительно уступают  планетам.

asteroids3_neargal_big

Самым большим из них является Церера. Этот астероид имеет  932 км в поперечнике. По размерам астероиды сильно различаются. Самые маленькие из них,  не отличаются от частиц пыли. Под собственными именами известно несколько тысяч астероидов. Считают, что с диаметром более полутора километров, насчитывается до полумиллиона астероидов . Однако, общая масса всех астероидов меньше одной тысячной массы Земли. Большинство орбит астероидов сконцентрировано в поясе астероидов между орбитами Марса и Юпитера на расстояниях от 2,0 до 3,3 а.е. от Солнца.

45691317_1246207171_gud01

Имеются, однако, и астероиды, чьи орбиты лежат ближе к Солнцу, типа группы Амура, группы Аполлона и группы Атена. Кроме того, имеются и более далекие от Солнца, типа центавров. На орбите Юпитера находятся троянцы, которых открыто уже более 1560 (первый открыт в 1906 году). 21 августа 2001 года открыл маленький астероид  2001 QR322  на орбите Нептуна. Через год стало ясно, что это первый "троянец" газового гиганта.
На 2 октября 2001г астрономы всего мира наблюдали 146.677 астероидов. Орбиты 30.716 из них определены и они получили собственные номера. Для остальных почти 116 тысяч, следовательно, еще предстоит "пройти" процедуру нумерации. Имена присвоены 8.914 астероидам.
Все началось 1 января 1801 года, когда итальянский астроном Джованни Пиацци (Giovani Piazzi) открыл первый астероид (1) Ceres. Вторую малую планету - (2) Pallas - удалось обнаружить 28 марта 1802 года немецкому астроному Х.В.Ольберсу (H.V.Olbers). Третью - (3) Juno - открыл 1 сентября 1804 года немецкий астроном К.Гардинг (K.Harding). Четвертую - (4) Vesta - открыл 29 марта 1807 года все тот же Х.В.Ольбертс.
Затем наступил перерыв на 38 лет, когда астрономам не удавалось сделать новых открытий. Лишь 8 декабря 1845 года немцу К.Л.Хенке (K.L.Hencke) удалось отыскать на звездном небе астероид (5) Astraea. Дальше открытия посыпались как из рога изобилия. В 1847 году были открыты малые планеты (6) Hebe, (7) Iris и (8) Flora, в 1848 году - (9) Metis, в 1849 году - (10) Hugiea, в 1850 году - (11) Parthenope, (12) Victoria и (13) Egeria, в 1851 году - (14) Irene и (15) Eunomia, и так далее с нарастающими темпами.
К 1 января 1901 года число открытых астероидов составило 463. В минувшем веке темпы открытий еще более увеличились. За первое десятилетие были открыты 270 малых планет, за второе - 245, за третье - 340, за четвертое - 627.

ast02

К 1 января 1951 года количество найденных астероидов составило 2153. Сколько открытий удалось сделать за вторую половину ХХ века, легко подсчитать. Причем 2/3 новых астероидов удалось обнаружить за последние три года.

Астероиды могут быть классифицированы по спектру отраженного солнечного света: 75% из них очень темные углистые астероиды типа С, 15% - сероватые кремнистые астероиды типа S, а оставшиеся 10% включают астероиды типа М (металлические) и ряд других редких типов. Классы астероидов связаны с известными типами метеоритов. Имеется много доказательств, что астероиды и метеориты имеют сходный состав, так что астероиды могут быть теми телами, из которых образуются метеориты. Самые темные астероиды отражают 3 - 4% падающего на них солнечного света, а самые яркие - до 40%. Многие астероиды регулярно меняют яркость при вращении. Вообще говоря, астероиды имеют неправильную форму. Самые маленькие астероиды вращаются наиболее быстро и очень сильно различаются по форме. Космический аппарат “Галилео” при полете к Юпитеру прошел мимо двух астероидов, Гаспра (29 октября 1991г) и Ида (28 августа 1993г). Полученные детальные изображения позволили увидеть их твердую поверхность, изъеденную многочисленными кратерами, а также то, что Ида имеет небольшой спутник. И наконец 12 февраля 2001г американский межпланетный зонд “NEAR-Shoemaker” достиг поверхности астероида (433) Эрос (Eros) и проработал на поверхности до 1 марта 2001г.

Первый спутник у астероида был замечен в 1993 году во время пролета межпланетного зонда "Galileo" мимо малой планеты (243) Ida. Спустя шесть лет спутник обрел собственное имя - Dactile. В последующие годы спутники были открыты у следующих астероидов: (3671) Dionysus, (45) Eugenia, (762) Pulcova, (90) Antiope, (87) Sylvia, (107) Camilla, (3749) Balam, 1998 WW31, 1999 KW4, (22) Kalliope, (617) Patroclus.  На 1 января 2002г открыто двенадцать астероидов, имеющий спутник, причем у последних шести обнаружены в 2001г.

К середине апреля 2002г выяснилось, что одно из самых удаленных от Земли небесных тел в Солнечной системе,  крупный представитель пояса Койпера- астероид 1998 WW31  является двойным. Иначе говоря, это два астероида, вращающиеся по эллиптическим орбитам вокруг общего центра масс.
Изучение 1998 WW31 с помощью орбитального телескопа “Hubble” позволило выяснить весьма любопытные подробности об этом небесном теле. Так, установлено, что период обращения “сладкой парочки” вокруг Солнца составляет 301 год, а период обращения вокруг центра масс двойной системы - 570 дней. Орбиты астероидов сильно вытянутые и расстояние между ними меняется в пределах от 4 до 40 тысяч километров.

28 сентября 2002г открыт спутник у астероида (121) Hermione.  Сам астероид Hermione имеет диаметр 209 км, а его спутник- около 13 км. Новая пара - классический вариант малой планеты со спутником. Таковых в Солнечной системе пока найдено семь (вместе с последним открытием). В двух случаях, когда было объявлено об открытии спутников у астероидов (90) Antiope и (3749) Balam, правильнее говорить о двойной системе, так как небесные тела движутся вокруг общей точки масс, а не один вокруг другого.

С Земли можно получить информацию о трехмерной структуре астероидов с помощью большого радиолокатора Аресибской обсерватории. Астероиды, как полагают, являются остатками вещества, из которого сформировалась Солнечная система. Это предположение подкреплено тем, что преобладающий тип астероидов внутри пояса астероидов меняется с увеличением расстояния от Солнца. Столкновения астероидов, происходящие на больших скоростях, постепенно приводят к тому, что они разбиваются на мелкие части.

Центр имени Эймса опубликовал данные за 2001 год о поиске околоземных астероидов. По состоянию на 28 января 2002 года общее число пролетающих мимо Земли астероидов составляет 1743, в том числе 587 из них имеют размеры более 1 км. В 2001 году было открыто 433 околоземные малые планеты, причем 103 из них имеют размеры более 1 км (в 2000г -125 ).
"Лидером" в этом вопросе являлась автоматизированная система наблюдений LINEAR в Массачусетском технологическом институте, с помощью которой удалось обнаружить 269 астероидов (67 размером более 1 км). На втором месте другая автоматизированная система NEAT-P в Паломарской обсерватории - 59 (13). На третьем - LONEOS в Обсерватории Ловелла - 45 (12). На четвертом - NEAT-M в Обсерватории Мауи - 34 (10). На пятом - система Spacewatch-I в Обсерватории Китт-Пик - 17 (0). На шестом - Spacewatch-II в Китт-Пик - 5 (0). В других обсерваториях мира открыты еще 4 околоземных астероида, в том числе один с размером более 1 км.

Десять лет назад с помощью инфракрасного телескопа у звезды дзета-Зайца был обнаружен диск необычно теплой пыли. Дальнейшие исследования к 2002г показали, что, скорее всего, в этой пыли идет образование астероидов или планет, подобно тому, как это происходило в нашей собственной солнечной системе. Также вполне возможно, что этот теплый пылевой диск скрывает пояс астероидов.  Звезда дзета-Зайца находится по космическим понятиям совсем рядом от нас - на расстоянии 70 световых лет. Ее масса вдвое превышает массу нашего Солнца. Известно также, что это очень молодая звезда, ей всего лишь 100 миллионов лет. По сравнению с ней наше Солнце очень древнее. Температура пылевых частиц, окружающих дзета-Зайца, составляет около 77 градусов С. А масса содержимого этого диска сравнима с массой Земли, то есть в 1000 раз больше, чем масса астероидного пояса в нашей солнечной системе. Однако самой большой неожиданностью для астрономов стало то, что пылевой диск с такими параметрами вообще не должен был бы находиться в этом месте. Он располагается так близко к самой звезде, что, по идее, все составляющие его частицы и частички материи должны были бы давно упасть на звезду дзета-Зайца под действием силы гравитационного притяжения. Значит, существует какой-то источник пополнения материи в пылевом диске.

В начале февраля 2003г с помощью автоматической системы поиска околоземных астероидов LINEAR (Lincoln Near Earth Asteroid Research) при Массачусетском технологическом институте найден астероид, орбита которого полностью лежит внутри орбиты Земли. Это третье подобное небесное тело в Солнечной системе (после Венеры и Меркурия).
Малая планета получила обозначение 2003 CP20. Его размер не превышает 1 км. Для нашей планеты астероид опасности не представляет, так как никогда не приближается к Земле ближе, чем на 28,4 миллиона км.

Пояс астероидов - область Солнечной системы, расположенная на расстоянии от 2,0 до 3,3 а.е. от Солнца, где лежит подавляющее большинство орбит астероидов.

asteroid

Внутри пояса имеются как области концентрации орбит, которые соответствуют группам и семействам астероидов, так и области, в которых астероидов практически нет (известные как пробелы Кирквуда). Пропорции различных типов астероидов в различных частях пояса заметно меняются. На внутреннем краю 60% астероидов составляют кремнистые, а 10% - углистые; на внешнем крае ситуация другая - 80% углистых и только 15% кремнистых. Пояс астероидов разделяет внутреннюю и внешнюю части Солнечной системы.

Пробелы Кирквуда Ненаселенные области в радиальном распределении астероидов, возникающие из-за соизмеримости и резонансов их периодов обращения с периодом обращения Юпитера. В распределении астероидов имеются заметные пустоты, соответствующие отношениям периодов 4:1, 3:1, 5:2, 7:3 и 2:1. Любые астероиды, находившиеся ранее на таких орбитах, подверглись бы регулярным возмущениям из-за гравитационного взаимодействия с Юпитером. Объяснение этого факта было дано Д. Кирквудом в 1857г. Однако на расстояниях больше 3 а.е. от Солнца подобные резонансы (в отношениях 3:2, 4:3 и 1:1) соответствуют уже не пустым промежуткам, а изолированным группам астероидов. Причины этого до сих пор полностью не поняты.

Пояс Койпера

Kuiper_belt

Небольшие ледяные тела, по размерам близкие к астероидам, которые занимают кольцеобразную область в плоскости Солнечной системы, простирающуюся от орбиты Нептуна (30 а.е. от Солнца) до расстояний, возможно, в 100 или даже 150 а.е. Это население, разнообразные члены которого описываются как "объекты пояса Койпера", "транснептунианские объекты" (Trans Neptunian Objects, TNO) или просто как "ледяные карлики", по некоторым предположениям является источником короткопериодических комет. Пояс назван именем Герарда Койпера, выдающегося голландско-американского ученого в области планетологии, который в 1951г предсказал существование такого пояса, основываясь на теории происхождения планетарных систем. Однако ирландский теоретик Кеннет Эджворт выдвигал подобные аргументы еще раньше, в 1943 и 1949гг. С учетом этого обстоятельства пояс иногда называют поясом Койпера-Эджворта.
Первый объект, входящий в пояс Койпера был открыт 30 августа 1992 года, находящегося на квазикруговой орбите на расстоянии около 50 а.е. от Солнца. Тогда он получил временное обозначение 1992 QB1, а теперь уже имеет и свой номер - 15760, правда собственного названия еще не удостоился.
В 1993 году пояс Койпера пополнился еще 5 объектами, а дальше количество малых планет, расположенных за пределами орбиты Нептуна (их иногда называют еще и транснептунеевыми объектами), стало увеличиваться весьма быстро.
В 1994 году были открыты 12 планет, в 1995 году - 15, в 1996 году - 14, в 1997 году - 18, в 1998 году - 41. В дальнейшем интенсивность обнаружения объектов в поясе Койпера еще более возросла. Так, в 1999 году были найдены 125 объектов, а в 2000 году - 135. За первое полугодие 2001г обнаружено пока только 13 планет. Общее число объектов в поясе Койпера стало составлять 379, но их количество оценивается в десятки и сотни тысяч, так что у астрономов еще все впереди.
Предлагалось даже считать планету Плутон самым большим членом пояса Койпера. Руководитель отдела космических исследований Исследовательского института Юго-запада, штат Техас (Southwest Research Institute) доктор Алан Штерн (Alan Stern) исследовал процесс формирования спутников у объектов пояса Койпера (KBO, Kuiper Belt Object), обнаруженных на протяжении 2001 года, и число таких объектов оказалось неожиданно большим - более 500. Обнаружение подобных двойных или, возможно, квазидвойных объектов, причем в значительном количестве, стало настоящим сюрпризом для астрономов. Первый спутник был обнаружен около года назад, но за прошедшее время этот список двойных объектов пополнился еще шестью КВО. К недоумению астрономов, совместные наблюдения, проводившиеся с помощью наземных инструментов и телескопа "Хаббл", показали, что во многих случаях спутники КВО своими размерами вполне сравнимы с центральным объектом.
Доктор Штерн провел исследование с целью выяснить, каким образом могут образовываться подобные двойные системы. Стандартная модель формирования крупных спутников предполагает, что они образуются в результате столкновения родительского объекта с крупным объектом. Подобная модель позволяет удовлетворительно объяснить формирование двойных астероидов, системы Плутон - Харон, а также может быть непосредственно применена к объяснению процесса формирования системы Земля - Луна.

В феврале 2000 года астрономами была открыта очередная комета, получившая обозначение 2000 CR105. Небесное тело размером более 400 км имеет сильно вытянутую эллиптическую орбиту и является одним из 70 тысяч объектов, относящихся к классу транснептунианских объектов.  В настоящее время комета находится на удалении в 53а.е. от Солнца. Казалось бы в сделанном открытии нет ничего необычного. Ежегодно астрономы регистрируют появление множества комет, которые, как правило, появляются и исчезают, не оставив о себе никакой другой памяти, кроме как в записях специалистов. Но, похоже, комету 2000 CR105 ждет другая судьба.
Изучая ее движение, специалисты обратили внимание на некоторое отклонение ее орбиты от рассчитанных параметров. Комета двигается не так, как должна бы, а немного отклоняется в сторону. Подобные погрешности заставили некоторых астрономов предположить наличие за орбитой Нептуна еще одной планеты, гравитационное поле которой и влияет на движение 2000 CR105, заставляя ее отклоняться от прогнозируемой траектории. Размеры неизвестной планеты оцениваются в пределах от размеров Луны до размеров Марса. Удаление этой планеты от Солнца по расчетам составляет около 10 миллиардов километров. В этой связи специалисты вновь заговорили о необходимости полета американского межпланетного зонда "Pluto-Kouper Express", который поможет ответить на многие вопросы о строении внешней части Солнечной системы.

Американские астрономы из Гавайского и Нью-Йоркского университетов выяснили, что транснептуневый объект  Varuna имеет поперечные размеры около 900 км, что делает его вторым по размерам небесным телом в поясе Койпера. Малая планета, получившая первоначальное обозначение 2000 WR106, была открыта в ноябре 1999г. Первоначально ее размеры были оценены в 2000 км, но наблюдения отражательной способности поверхности, проведенные одновременно с помощью двух телескопов на горе Маун-Кеа на Гавайских островах, позволили уточнить размеры небесного тела.

2 июля 2001г астрономы открыли еще один астероид 2001 KX76. Параметры его орбиты составляют: наклонение - 16,6 град.; минимальное расстояние от поверхности Солнца (перигелий) - 42,218 а.е.; максимальное расстояние от поверхности Солнца - 49,933 а.е.; эксцентриситет - 0,084. Предварительные расчеты показывают, что малая планета находится в орбитальном резонансе с Нептуном (2001 KX76 трижды облетает вокруг Солнца за время, в течение которого Нептун четырежды огибает наше светило). Диаметр 2001 KX76 оценен в 1270 км, что больше чем диаметр Цереры (932 км) и спутника Плутона Харона (1200 км). Тем не менее, это самый яркий объект пояса Койпера, открытый до сих пор. Сделанное открытие лишний раз подтверждает, что Плутон - не девятая планета Солнечной системы, а лишь крупнейший объект пояса Койпера.

В начале октября 2002г открыт объект  2002 LM60 (назван Quaoar) диаметр которого - 1280 километров - лишь вдвое меньше диаметра Плутона.  Как заявил астроном Майкл Браун, "совершенно ясно, что, если бы мы открыли Плутон сегодня, зная все, что знаем сейчас о других объектах в поясе Койпера, мы бы даже не подумали назвать его планетой". Другие ученые не исключают, что в астероидном поясе могут быть найдены тела, даже превышающие Плутон по размерам.

Типы астероидов

Тип Описание
А Редкий тип астероида, характеризуемый умеренно высоким альбедо и интенсивным красном цветом. Сильное поглощение в ближнем инфракрасном диапазоне интерпретируется как свидетельство присутствия оливина.
B Подкласс астероидов типа С, отличающихся более высоким альбедо.
С Категория темносерых астероидов с альбедо около 5%. "C" - означает “углистый”, поскольку они, как полагают, состоят из вещества того же типа, что и углистые хондриты. Астероиды типа С распространены во внешней части главного пояса.
D Тип астероидов красноватого цвета, редко встречающихся в главном поясе, но обнаруживаемых все чаще на больших расстояниях от Солнца.
Е Редкий тип астероидов с высоким альбедо. По химическому составу они могут обнаруживать сходство с метеоритами, известными как энстатитовые ахондриты.
F Подкласс астероидов типа C, отличающийся слабым ультрафиолетовым поглощением в спектрах или полным его отсутствием.
G Подкласс астероидов типа C, отличающихся сильным ультрафиолетовым поглощением в спектре.
М Распространенный тип астероидов с умеренным альбедо, предположительно имеющих металлический состав, подобный составу железных метеоритов.
P Астероид с низким альбедо. Астероиды типа P наиболее часто встречаются во внешней части главного пояса.
Q Редкий тип астероидов, похожих по своим свойствам на метеориты, относящиеся к хондритам. К этому классу астероидов принадлежит Аполлон и несколько других приближающихся к Земле астероидов.
R Редкий тип астероида с умеренно высоким альбедо, примером которого является астероид Дембовска (349).
S Категория астероидов с промежуточным значением альбедо, которые, как предполагают, подобно каменным метеоритам, состоят из кремнистого вещества. Астероиды типа S во внутренней части пояса астероидов встречаются относительно часто.
T Тип астероидов, характеризующихся очень низким альбедо.
V Класс астероидов, единственным известным членом которого является Веста.
Троянцы Два семейства астероидов, находящихся на одной орбите с Юпитером и группирующихся вокруг точек Лагранжа, отстоящих на 60° в обе стороны от планеты. Известно более двухсот таких астероидов, большинство из которых находится в "предшествующей" группе. Они не остаются на одном месте орбиты, а колеблются вокруг точек Лагранжа с периодами в 150-200 лет, удаляясь или приближаясь к Юпитеру в пределах 45-80°. Первым их троянцев был открыт Ахиллес, что и стало причиной присвоения всем открытым впоследствии астероидам имен героев Троянских войн. Наибольший из Троянцев астероид Патрокл имеет диаметр 272 км.
Хильды Группа астероидов у внешнего края главного пояса астероидов на расстоянии 4,0 а.е. от Солнца. Названы по имени астероида 153 Хильда диаметром 180 км, открытого Ж. Пализа в 1875г. Их орбитальные периоды соизмеримы с периодом обращения Юпитера в отношении 3:2. От остальной части пояса астероидов они отделены пробелом Кирквуда.
Фокеи Группа астероидов с орбитами, наклоненными на 24° к плоскости Солнечной системы и находящимися на расстоянии 2,36 а.е. от Солнца. Группа отделена от главного пояса астероидов одним из пробелов Кирквуда. Астероиды этой группы не имеют общего происхождения и не принадлежат к одному семейству. Группа названа по имени астероида Фокея(25) с диаметром около 70 км.
Хираямы Группы астероидов, имеющих подобные орбиты и поэтому расположенных в пространстве близко друг к другу. Существование подобных группировок впервые было отмечено японским астрономом Киоцуго Хираяма в 1918 г. С тех пор обнаружено больше сотни таких семейств. Во многих случаях членами семейства оказываются астероиды, относящиеся к подобным или связанным типам, что заставляет думать, что они образовались при разрушении одного исходного тела. К семействам Хираямы, как полагают, принадлежит примерно половина всех астероидов.
Корониды Одно из семейств Хираямы, астероиды которого находятся в среднем на расстоянии 2,88 а.е. от Солнца. Члены семейства относятся к типу силикатных астероидов и, как предполагается, происходят из одного родительского тела, имевшего в диаметре около 90 км. Самый большой член семейства – Лакримоза (208), около 45 км в диаметре. Семейство названо по имени астероида Коронида (158) диаметром 35 км, открытого в 1876г.
Фемиды Одно из астероидных семейств Хираямы, находящееся на расстоянии 3,13 а.е. от Солнца. Все члены семейства принадлежат к углистому типу астероидов, что предполагает их общее происхождение от одного родительского тела.
Эос Одно из астероидных семейств Хираямы. Члены семейства находятся на расстоянии 3,02 а.е. от Солнца. По своему типу они занимают промежуточное положение между углистыми и кремнистыми астероидами.

Самые, самые астероиды

Астероид, который кажется самым ярким с Земли - Веста(4). Когда Веста находится на минимально возможном расстоянии от Земли, ее яркость достигает звездной величины 6,5. При очень темном небе Весту можно обнаружить даже невооруженным глазом (это единственный астероид, который вообще можно увидеть невооруженным глазом). Следующий по яркости - самый большой астероид Церера, но его яркость никогда не превышает звездной величины 7,3. Хотя Веста по размерам составляет три пятых от Цереры, она имеет гораздо большую отражательную способность. Веста отражает около 25% падающего на нее солнечного света, в то время как Церера - всего 5%. Веста кажется уникальным объектом среди больших астероидов, так как ее поверхность состоит из светлых вулканических пород, которые обладают высокой отражательной способностью. Астероиды с такой отражательной способностью принадлежат к отдельному классу, известному как тип Е (обозначение класса происходит от названия минерала энстатит). Такие астероиды редки, а их отражательная способность лежит в пределах от 30 до 40%. Самый яркий из них - Ниса(44) - имеет звездную величину 9,7, хотя ее поперечник равен всего 68 км.

Пояснения: Серия изображений, полученных Космическим телескопом "Хаббла" с 28 ноября по 1 декабря 1994 г. На них можно видеть полный оборот астероида Веста (с периодом 5,34 час. ). Имея в диаметре 525 км, Веста является третьим по величине астероидом. Анализ показал, что астероид имеет форму минипланеты с подповерхностной мантией, обширными ударными впадинами и потоками лавы.

Самый темный из больших астероидов - тот, который отражает наименьшее количество падающего на него солнечного света, - Аретуза(95). Его отражательная способность равна всего 1,9%. Он принадлежит к астероидам типа C, что означает "carbonaceous" (углистый). Астероиды такого типа наиболее распространены, составляя до 80% всего населения внешней части пояса астероидов. Другие классы темных астероидов - астероиды типов P и D. Поверхности всех этих объектов так же темны, как уголь, - их отражательная способность лежит в пределах от 2 до 6%. Среди больших астероидов, лежащих в поясе астероидов, к наиболее темным относятся также Атланта(36) (с отражательной способностью 2,4%), Гестия(46) (2,8%), Аглая(47) (2,7%), Мелета(56) (2,6%), Кибела(65) (2,2%) и Аврора(94) (2,9%).

Самый крупный астероид по размеру и массе

Первый открытый астероид - Церера. Он был обнаружен Джузеппе Пьяцци из Палермо, Сицилия, 1 января 1801 г. До настоящего времени это самый большой астероид, имеющий 932 км в диаметре; его орбита лежит в главном поясе астероидов на расстоянии 2,77 а.е от Солнца. Его масса самая большая и равна 1,17×1021 кг, что составляет около трети всей массы пояса астероидов. По яркости он достигает максимальной звездной величины 6,9, причем его альбедо составляет только 9%. Период вращения равен 9 час, и в течение этого времени цвет и яркость изменяются очень незначительно (наводя на мысль, что он имеет почти сферическую форму и однородно серый цвет). Спектр Цереры указывает, что ее поверхность по химическому составу может быть подобна углистым хондритам. Расстояние Цереры от Солнца изменяется от 2,55 до 3,05 а. е.

Самый темный из больших астероидов - тот, который отражает наименьшее количество падающего на него солнечного света, - Аретуза(95). Его отражательная способность равна всего 1,9%. Он принадлежит к астероидам типа C, что означает "carbonaceous" (углистый). Астероиды такого типа наиболее распространены, составляя до 80% всего населения внешней части пояса астероидов. Другие классы темных астероидов - астероиды типов P и D. Поверхности всех этих объектов так же темны, как уголь, - их отражательная способность лежит в пределах от 2 до 6%. Среди больших астероидов, лежащих в поясе астероидов, к наиболее темным относятся также Атланта(36) (с отражательной способностью 2,4%), Гестия(46) (2,8%), Аглая(47) (2,7%), Мелета(56) (2,6%), Кибела(65) (2,2%) и Аврора(94) (2,9%).

Самый крупный астероид по размеру и массе

Первый открытый астероид - Церера. Он был обнаружен Джузеппе Пьяцци из Палермо, Сицилия, 1 января 1801 г. До настоящего времени это самый большой астероид, имеющий 932 км в диаметре; его орбита лежит в главном поясе астероидов на расстоянии 2,77 а.е от Солнца. Его масса самая большая и равна 1,17×1021 кг, что составляет около трети всей массы пояса астероидов. По яркости он достигает максимальной звездной величины 6,9, причем его альбедо составляет только 9%. Период вращения равен 9 час, и в течение этого времени цвет и яркость изменяются очень незначительно (наводя на мысль, что он имеет почти сферическую форму и однородно серый цвет). Спектр Цереры указывает, что ее поверхность по химическому составу может быть подобна углистым хондритам. Расстояние Цереры от Солнца изменяется от 2,55 до 3,05 а. е.

Некоторые особые астероиды

Адонис

2101

диаметром 2 км, открытый Э. Дельпортом (Бельгия, 1936); обращается вокруг Солнца по сильно вытянутой эллиптической орбите с периодом 2,76 года. Расстояние Адониса от Солнца изменяется от 0,44 до 3,50 а.е. Может сближаться с Землей на расстояние до 2 млн. км. Принадлежит к астероидной группе Аполлона. В 1937 г. приблизился к Земле на расстояние меньше 2 млн. км, но затем был потерян до 1977 г., когда его орбита была вычислена заново.

Алинда

887

диаметром 4 км. Был открыт в 1918 г. М. Вольфом, когда астероид приблизился к Земле. Член астероидной группы Амура.

Амур

1221

диаметром 1 км, открытый Э. Дельпортом в 1932 г. Прототип группы Амура, в которую входят близкие к Земле астероиды с перигелиями от 1,0 до 1,3 а.е., находящиеся внутри главного пояса астероидов.

Ангелина

64

диаметром 60 км, открытый Э.В.Темпелем в 1861 г. Один из астероидов, наиболее сильно отражающих свет (альбедо около 34%).

Антиной

1863

диаметром 3 км. Был открыт А. Виртаненом в 1948 г. при близком подходе к Земле. Был заново обнаружен в 1972 г.

Аполлон

1862

диаметром 1,4 км, открытый К. Рейнмутом (Германия, 1932), обращается вокруг Солнца по вытянутой эллиптической орбите с периодом 1,81 года. Расстояние Аполлона от Солнца изменяется от 0,65 до 2,33 а. е. Сближается с Землей до 0,1 а.е. Представляет собой прототип астероидной группы Аполлона, чьи орбиты пересекают орбиту Земли.

Астрея

5

диаметром 120 км, открытый в 1845 г. К.Л. Хенке. Расстояние от Солнца изменяется в пределах от 2,13 до 3,03 а. е.

Атен

2062

диаметром 0,8 км, открытый в 1976 г. Э. Хелином. Прототип группы Атена, включающей близкие к Земле астероиды, орбиты которых находятся главным образом внутри земной орбиты. Большие полуоси их орбит меньше 1 а.е., а их афелий превышает 0,938 а.е.

Ахиллес

588

диаметром 116 км. Открытый M. Вольфом в 1906 г., астероид был первым из троянцев, получившим собственное имя.

Альберт

719

диаметром 2,6 км. Был открыт астрономом Ж. Пализа при близком подходе к Земле в 1911 г., однако позже был потерян.

Беттина

250

диаметром 128 км, открытый в 1885 г. Ж. Пализа.

Бетулия

1580

диаметром 60 км, открытый в 1950 г. при его приближении к Земле.

Будроса

338

диаметром 80 км, относящийся к редкому металлическому типу. Является прототипом семейства Будросы необычных астероидов, к которому относятся шесть известных астероидов. Они сгруппированы на расстоянии в 2,9 а.е. от Солнца на орбитах с наклонением 6° к плоскости Солнечной системы.

Владилена

852

диаметр около 10 км, открыта С. И. Белявским (Симеиз, 1916), названа в 1924 по имени В. И. Ленина. Расстояние Владилены от Солнца изменяется от 1,3 до 3,5 а. е.

Флора

951

Астероид, член, сфотографированный АМС "Галилео", прошедшим от него 29 октября 1991 г. на расстоянии 16000 км. Астероид имеет неправильную форму с размерами 20 × 12 × 11 км и покрытую кратерами поверхность. Самый большой кратер имеет 1,5 км в поперечнике. Кроме того, "Галилео" обнаружил магнитное поле, так что можно предположить, что в состав Гаспры входят металлы.

Ганимед

1036

открыта В. Бааде (Германия, 1924), диаметром 28 км. По вытянутости (эксцентриситет 0,54) и наклону к плоскости земной орбиты (26°) орбита Ганимеда напоминает орбиты комет (заходит внутрь орбиты Марса). Наименьшее расстояние Ганимеда от Солнца 1,22 а. е., наибольшее — 4,1 а. е.

Гектор

624

самый большой из троянцев, открытый А. Копфом в 1907 г. При вращении с периодом, почти равным 7 час. его яркость меняется в три раза. Измерения указывают, что Гектор имеет цилиндрическую форму, 150 км в ширину и 300 км в длину. Предполагается, что Гектор может фактически состоять из двух контактирующих или близлежащих астероидных тел.

Географос

1620

диаметром 2 км, впервые открытый в 1951 г. Р. Минковским и А. Уилсоном и вновь обнаруженный в 1969 г. при близком подходе к Земле. Член группы Аполлона.

Гермес

1937 UB

открытый K. Рейнмусом в 1937 г., когда он подошел к Земле ближе чем на 800000 км, что было тогда самым близким зарегистрированным подходом астероида. Астероид достигал 8-й звездной величины и двигался по небу со скоростью 5° в час. Он наблюдался только в течение нескольких дней и впоследствии был потерян.

Дамокл

5335

открытый в 1991 г. Он вращается по необычной, сильно вытянутой орбите на расстоянии от 1.6 до 22 астрономических единиц от Солнца.

Дедал

1864

диаметром 3,2 км, открытый T. Герельсом в 1971 г. Его орбита пересекается с орбитой Земли

Дембовска

349

диаметром 164 км, открытый А. Шарлуа в 1892 г. Он принадлежит к редкому классу астероидов типа R и является членом семейства Будроса.

Ивар

1627

диаметром 6,2 км, открытый Эйнаром Герцшпрунгом в 1929 г. Член группы Амура.

Ида

243

PIA00333

член семейства Корониды, размерами 58 × 23 км. Крупноплановые изображения Иды были получены АМС "Галилео" 28 августа 1993 г. при полете к Юпитеру. "Галилео" обнаружил, что Ида имеет маленький спутник, впоследствии названный Дактилем, размерами около 1,6 × 1,2 км. Наблюдения орбитального движения Дактиля позволили определить, что плотность Иды составляет 2,2 - 2,9 г/см3. Состав обоих тел не идентичен, из чего следует, что система могла возникнуть в результате столкновения и разлома больших тел, из которых образовалось семейство Корониды. Поверхность обоих тел сплошь покрыта кратерами. Минимальные размеры различимых на фото объектов, в том числе кратеров и каменных глыб, составляют в поперечнике от 30 до 150 м.

Идальго

(Гидальго)

944

диаметром 40-60 км, открытый в 1920 г. Вальтером Бааде. Он движется по сильно вытянутой эллиптической орбите от главного пояса астероидов за пределы орбиты Сатурна. Орбита наклонена к плоскости Солнечной системы на относительно острый угол, равный 42°. Уникальные особенности его орбиты привели некоторых астрономов к мысли, что Идальго может быть "мертвым" кометным ядром. обладает уникально большими полуосью орбиты (5,8 а. е.) и ее наклоном к плоскости земной орбиты (42,5°). Расстояние Гидальго от Солнца меняется от 1,9 до 9,7 а. е. Период обращения вокруг Солнца 13,7 года.

Икар

1566

диаметром 1,4 км, открытый  В. Бааде (США, 1949). Расстояние Икара от Солнца меняется от 0,185 а.е. (28 млн. км, вдвое ближе Меркурия) до 1,985 а. е., период обращения 409 суток. Сближается с Землей до расстояния 7 млн. км. Член группы Аполлона, имеет эллиптическую орбиту с самым большим эксцентриситетом.

Кецалкоатль

1915

диаметром 0,4 км, открытый в 1953 г., когда он приблизился к Земле. Член группы Амура.

Матильда

253

mathilde

изображение которого было получено космическим аппаратом проекта Околоземное встречи с астероидами ("NEAR") 27 июня 1997 г. с пролетной траектории. Матильда -равномерно темный астероид типа C с альбедо, равным только 3%. По данным, полученным с "NEAR", средний диаметр астероида равен 52 км. Во время встречи на освещенной Солнцем стороне астероида были идентифицированы пять кратеров с диаметром более 20 км. Был измерен и период вращения астероида, который оказался неожиданно большим (17,4 суток).

Пояснение: 27 июня 1997 г. в 8 час. 56 мин. (время EDT) космический аппарат "NEAR" (Near Earth Asteroid Rendezvous - Околоземные Астероидные Рандеву) пролетел на расстоянии 1200 км от астероида класса С Матильда 253, принадлежащего к основному поясу астероидов. Во время пролета (на скорости 9,93 км/сек) было получено цветное изображение (с использованием семи фильтров) при большом разрешении (180 м/пиксел). Во время съемки астероид вращался, так что на изображении появилось "сияние" в верхней части слева. На видимой части астероида видны многочисленные ударные кратеры, размер которых варьирует от 0,5 до 30 км. На части поверхности Матильды, наблюдавшейся во время космического рандеву (около 60 % всей площади) имеется по меньшей мере 5 кратеров с диаметром больше 20 кмРазмеры астероида оцениваются как 50 x 53 x 57 км.

Плутон

PLUTON004

Плуто́н - это вторая по размерам (после Эриды) карликовая планета нашей Солнечной системы и десятое по величине небесное тело, обращающееся вокруг Солнца. Изначально Плутон классифицировался как планета, однако в данный момент он считается одним из крупнейших объектов (но не самым крупным) в поясе Койпера.

Прочитать остальную часть записи »

Нептун

neptun1

Нептун (астрологический знак J) - это восьмая от Солнца большая планета нашей  Солнечной системы, которая относится к планетам-гигантам.  В древнегреческой мифологии Пасейдон - бог моря. Нептун движется вокруг Солнца по эллиптической, близкой к круговой, орбите со средним расстоянием от Солнца в 30 раз больше, чем у Земли.  Это значит, что свет от Солнца доходит до Нептуна немногим более чем за 4 часа. Планета почти в четыре раза превосходит Землю, притом собственное вращение настолько быстрое, что сутки на Нептуне длятся всего 17,8 часов. Хотя средняя плотность Нептуна почти втрое меньше земной, его масса из-за больших размеров планеты в 17,2 раза больше, чем у Земли. Нептун выглядит на небе как звезда 7,8 звездной величины (недоступна невооруженному глазу); при сильном увеличении имеет вид зеленоватого диска, лишенного каких-либо деталей.

Нептун обладает магнитным полем, напряженность которого на полюсах примерно вдвое больше, чем на Земле.

Эффективная температура поверхностных областей — ок. 38 К, но по мере приближения к центру планеты она возрастает до (12-14)·103 К при давлении 7-8 мегабар.

Из всех элементов на Нептуне преобладают водород и гелий примерно в таком же соотношении, как и на Солнце: на один атом гелия приходится около 20 атомов водорода. В несвязанном состоянии водорода на Нептуне значительно меньше, чем на Юпитере и Сатурне. Атмосфера планеты состоит из метана (CH4), H2, Нe. Присутствуют и другие элементы, в основном легкие. На Нептуне, как и на других планетах-гигантах, произошла многослойная дифференциация вещества, в процессе которой образовалась протяженная ледяная оболочка как на Уране. По теоретическим оценкам, имеется и мантия, и ядро. Масса ядра вместе с ледяной оболочкой согласно расчетным моделям может достигать 90% всей массы планеты.

История открытия Нептуна

После того, как в 1781г  Уильям Гершель открыл Уран и рассчитал параметры его орбиты, довольно скоро в 1789г обнаружились загадочные аномалии в движении этой планеты — оно то «отставало» от расчетного, то опережало его.

В 1842г в отчете Британской Ассоциации развития науки Джордж Эри, впоследствии ставший королевским астрономом, отмечал, что за 11 лет ошибка в положении Урана достигла почти полминуты дуги. В 1842г Геттингенская АН назначает премию тому, кто объяснит это загадочное явление. Вскоре после опубликования отчета Эри получил от британского астронома-любителя, преподобного доктора Хассея, письмо, в котором выдвигалось предположение, что эти аномалии обусловлены воздействием пока еще неоткрытой «заурановой» планеты. По-видимому, это было первым предложением искать «возмущающую» планету. Эри не одобрил идею Хассея, и поиски не были начаты.

А еще за год до этого талантливый молодой английский студент Джон Кауч Адамс отметил в своих записях: «В начале этой недели появилась мысль заняться сразу же после получения степени исследованием аномалий в движении Урана, которые до сих пор не объяснены. Надо найти, могут ли они быть обусловлены влиянием находящейся за ним неоткрытой планеты и, если возможно, определить хотя бы приблизительно элементы ее орбиты, что может привести к ее открытию».

Адамс получил возможность приступить к решению этой задачи только через два года, и к октябрю 1843г предварительные вычисления были закончены. Адамс решил показать их Эри, однако встретиться с королевским астрономом ему не удалось. Адамсу оставалось лишь вернуться в Кембридж, оставив для Эри результаты проведенных расчетов. По непонятным причинам Эри отреагировал на работу Адамса отрицательно, ценой чего явилась потеря Англией приоритета в открытии новой планеты.

Независимо от Адамса над проблемой заурановой планеты работал во Франции Урбен Жан Леверье. 10 ноября 1845г он представил Французской АН результаты своего теоретического анализа движения Урана, заметив в заключение о расхождении между данными наблюдений и расчетов: «Это можно объяснить воздействием внешнего фактора, который я оценю во втором трактате». Такие оценки были проведены в первой половине 1846г. Успеху дела помогло предположение, что искомая планета движется, в соответствии с эмпирическим правилом Тициуса - Боде, по орбите, радиус которой равен утроенному радиусу орбиты Урана, и что орбита имеет очень малый наклон к плоскости эклиптики. Леверье выступил с указанием, где следует искать новую планету.

Получив второй трактат Леверье, Эри обратил внимание на очень близкое совпадение результатов исследований Адамса и Леверье, относящихся к движению предполагаемой планеты, возмущающей движение Урана, и даже подчеркнул это на специальном заседании Совета инспекторов Гринвича. Но он, как и ранее, не торопился начать поиски и стал хлопотать о них только в июле 1846, поняв, какое негодование может вызвать впоследствии его пассивность.

Тем временем Леверье 31 августа 1846г закончил еще одно исследование, в котором была получена окончательная система элементов орбиты искомой планеты и указано ее место на небе и представил его в Парижскую АН. Но во Франции, как и в Англии, астрономы все не приступали к поискам, и 18 сентября Леверье обратился к Иоганну Гольфрид Галле, ассистенту Берлинской обсерватории. В письме он писал: «Направьте телескоп в созвездие Водолея в точку эклиптики с долготой 326º, и в пределах одного градуса Вы найдете новую планету. Она девятой звездной величины и имеет заметно различимый диск». Получив разрешение директора обсерватории, 23 сентября 1846г  вместе со студентом Д'Арре начал поиски. В первый же вечер планета была обнаружена, она находилась всего в 52' от предполагаемого места.

Весть об открытии планеты «на кончике пера», что явилось одним из ярчайших триумфов небесной механики, вскоре облетела весь научный мир. По установившейся традиции планета получила название Нептун в честь античного бога.

Около года между Францией и Англией шла борьба за приоритет открытия, к которой, как это часто бывает, сами герои непосредственного отношения не имели. В частности, между Адамсом и Леверье установилось полное взаимопонимание, и они оставались друзьями до конца жизни.

Кстати планета наблюдалась еще Г. Галилеем в конце 1612г и начале 1613г, который зарисовал ее в своем журнале наблюдений, приняв за звезду. 8 и 10 мая 1795г Ж. Лаланд также не обратил внимания, а летом 1846г Д. Чэллис принял ее за звезду.

Характеристики планеты Нептун

Нептун
Средняя удаленность планеты от Солнца (а.е.) 30,0611 (4497070000км)
Эксцентриситет орбиты 0,0097
Наклон орбиты к плоскости эклиптики (градусы) 1,774
Орбитальная скорость (км/с) 5,43
Сидерический период обращения планеты (лет) 146,79 (60190 дней)
Синодический период (дней) 367,49
Максимальная видимая звездная величина 7,6
Общая массаa 19424
Массаb (Земля=1) 17,135
Массаb (килограмм) 1,024×1026
Экваториальный радиусf (Земля=1) 3,883
Экваториальный радиус(км)f 24764
Сжатиеc 0,017
Средняя плотность (г/см3) 1,64
Ускорение силы тяжести на экваторе (м/с2) 11,0
Вторая космическая скорость на экваторе (км/с) 23,3
Сидерический период вращения (часов) 19,2
Период обращения вокруг оси (часов) 16,11
Наклонение экватора к орбите (градусы) 29,6
Число известных спутников 8

aОтношение массы Солнца к массе планеты (включая атмосферу и массу спутников).
bБез учета массы спутников.
cСжатие равно (Re-Rp)/Re, где Re и Rp - экваториальный и полярный радиусы планет (соответственно).
fДля внешних планет не имеющих твердой поверхности радиус соответствует уровню атмосферного давления в 1 бар..

Нептун – самая ветряная планета Солнечной системы. Крупномасштабные атмосферные образования в экваториальной области планеты движутся с востока на запад со скоростью около 325 м/сек относительно ядра планеты, а более мелкие детали перемещаются почти вдвое быстрее. Это означает, что скорости потоков выбросов у экватора Нептуна приближаются к сверхзвуковым. Скорость звука в атмосфере Нептуна составляет примерно 600 м/сек. Сильные ветры наблюдаются на всех гигантских планетах, но не ясно, почему самое быстрое движение атмосферы имеется именно на Нептуне. Возможно, это связано с влиянием внутренних источников тепла у Нептуна. Вторая среди "самых ветреных" планет - Сатурн, где максимальные скорости ветра примерно вдвое меньше, чем на Нептуне.

На изображениях, полученных АМС "Вояджер-2" (единственный пока КА исследовавший Нептун) в 1989г наблюдалось на планете овальное Большое темное пятно. Это была грозовая система в облачных слоях Нептуна, подобная Большому красному пятну на Юпитере, но она просуществовала не так долго. Ветры несли Большое Темное Пятно к западу со скоростью 300 метров в секунду. "Вояджер 2" также видел меньшее темное пятно в южном полушарии и небольшое непостоянное белое облако, которое проносилось вокруг Нептуна за 16 часов. Оно могло быть потоком, восходящим от нижних слоев атмосферы к верхним, но истинная природа его остается пока тайной. Его назвали "Скутер".

Любопытно, что наблюдения на HST в 1994-м году показали, что Большое Темное Пятно исчезло. Оно или просто рассеялось или, к настоящему времени, закрыто другими частями атмосферы. Несколько месяцев спустя, HST обнаружил новое темное пятно в северном полушарии Нептуна. Наибольший размер пятна почти равнялся диаметру Земли (около 12000 км), достигая почти половины размера Большого красного пятна. Это указывает на то, что атмосфера Нептуна изменяется быстро, возможно, из-за легких изменений в температурах верхних и нижних облаков.

Наблюдения за Нептуном, которые в течение шести лет проводились с помощью космического телескопа Hubble, показали, что эта планета стала за эти годы заметно ярче (см. фото). Причем самые заметные изменения произошли в южном полушарии: полосы облаков стали выделяться очень четко, они стали и шире и ярче. По мнению ученых, это говорит о том, что на Нептуне происходят сезонные изменения климата, подобные тем, что мы наблюдаем у себя на Земле, только длятся  не по три месяца, а более 40 лет.

Правда, астрономы не ожидали обнаружить на Нептуне сезонные изменения, потому что Солнце на этой планете по причине своей удаленности выглядит в 900 раз менее ярким, чем на Земле. Тем не менее, изменения освещенности даже от такого "слабого" источника света приводят к определенным изменениям в атмосфере Нептуна и, следовательно, к изменениям климата. Но на этот процесс оказывает еще влияние и внутренний источник тепла Нептуна. А вообще-то, эта планета очень слабо изучена из-за своей сильной удаленности. Но если к самой дальней планете солнечной системы Плутону NASA все-таки собирается отправить в 2006г исследовательский зонд, то Нептун пока в планах не значится.

Спутники Нептуна.

В настоящее время известно 13 естественных  спутников планеты Нептун.

neptunimg.cgi

Крупнейший спутник Нептуна Тритон был открыт английским астрономом Уильямом Ласселом в 1846 году, всего через 17 дней после открытия планеты. Название Тритон было предложено Камиллем Фламмарионом в 1880, однако вплоть до середины XX века более употребительным было просто «спутник Нептуна» (второй спутник Нептуна был открыт только в 1949). Тритон — бог моря в греческой мифологии.

В 1949 году американско-голландский астроном Джерард Койпер открыл второй спутник Нептуна — Нереиду. Спутник имеет самую вытянутую орбиту из всех «немелких» спутников планет. Её расстояние до Нептуна меняется от 1,4 до 9,7 млн км. Период обращения — 360 суток. Период вращения вокруг своей оси — 11,5 часа. «Вояджер-2» в 1989 определил диаметр Нереиды — 340 км и её отражательную способность — 12 %. Масса спутника составляет 3,1·1019 кг. Спутник назван в честь нереид — морских нимф из греческой мифологии.

Остальные спутники

В 1989 «Вояджер-2» открыл шесть спутников Нептуна. Все они движутся по круговым орбитам в прямом направлении практически в плоскости экватора планеты. Пять из них имеют периоды обращения меньше периода вращения планеты, и поэтому на нептунианском небе восходят на западе и заходят на востоке; это также означает, что из-за гравитационного трения они рано или поздно упадут на Нептун. Самый крупный из этих спутников — Протей — неправильной формы со средним диаметром около 420 км. Он темнее Нереиды, и отражает всего 6 % падающего света. Протей имеет серый цвет; на его поверхности видны кратероподобные образования и трещины. Ещё один спутник, Ларисса, тёмный объект неправильной формы размером 210×180 км, отражающий 5 % света. На нем видны несколько кратеров размерами 30—50 км. Неправильная форма Протея и Лариссы указывает на то, что на протяжении всей своей истории они оставались холодными глыбами льда. Радиусы орбит спутников 117,6 тыс. км и 74 тыс. км соответственно. Об остальных спутниках известно ещё меньше. Деспина и Галатея обращаются на расстояниях 62 тыс. км и 52 тыс. км, соответственно. Таласса обращается вокруг Нептуна за 7,5 часа на расстоянии 50 тыс. км. Наяда, с периодом обращения 7,1 часа, имеет орбиту, заметно наклонённую к плоскости экватора Нептуна — на 4,5°.

В 2002—2003 открыты ещё пять спутников Нептуна. Каждый из новооткрытых объектов имеет диаметр 30-60 км и нерегулярную, вытянутую орбиту с большим наклоном. Период их обращения вокруг Нептуна составляет от 5 до 26 земных лет.

Уран

ura

Уран (астрономический знак I) - седьмая от Солнца большая планета нашей Солнечной системы, которая относится к планетам-гигантам. Эта планета достаточно яркая. При хороших условиях  наблюдения, Уран можно увидеть невооруженным глазом. При наблюдении с Земли, даже в самый большой телескоп, он кажется зеленоватым диском, почти лишенным деталей. В 1986г,  первый и пока единственный, космический зонд "Вояджер-2" прошел недалеко от Урана и его спутников, передав на Землю их крупноплановые изображения. Космическим зондом были открыты десять небольших спутников Урана (к этому времени были уже известны пять больших спутников планеты - Миранда, Ариэль, Умбриэль, Титания и Оберон- название последним четырем дал У. Ласселл). Сравнительно недавно (1997-1999гг) были открыты еще 6 небольших спутников планеты. Их количество сейчас достигло 21 спутника.
Уран является одним из четырех "газовых гигантов" Солнечной системы. Его экваториальный радиус почти в четыре раза, а масса  в 14,6 раза больше, чем у Земли. Сжатие поверхности составляет почти сороковую часть (650км). При этом средняя плотность Урана  в 4,38 раза меньше, чем плотность Земли. Относительно малая плотность Является типичной для планет-гигантов. В процессе их формирования из газово-пылевого протопланетного облака наиболее легкие компоненты (в первую очередь, водород и гелий) стали для них основным «строительным материалом». Тогда как планеты относящиеся к земной группе,  включают заметную долю более тяжелых элементов.

История открытия Урана

В течение многих веков астрономы Земли знали только пять «блуждающих звезд» — планет. 1781г был ознаменован открытием еще одной планеты, названной Ураном. Это произошло, когда английский астроном У. Гершель приступил к реализации грандиозной программы: составлению полного систематического обзора звездного неба. Систематические планомерные обзоры начал с 1775г по новому, предложенному им «методу черпков».

В ходе второго планомерного обзора 13 марта 1781г в 10 часов вечера вблизи одной из звезд созвездия Близнецов Гершель заметил любопытный объект, который явно не был звездой: его видимые размеры менялись в зависимости от увеличения телескопа, а главное, менялось его положение на небосводе. Гершель первоначально решил, что открыл новую комету (его доклад на заседании Королевского общества 26 апреля 1781 так и назывался — «Сообщение о комете»), но от кометной гипотезы вскоре пришлось отказаться. Через 4 месяца российский астроном А.И. Лексель доказал, что это планета. В благодарность Георгу III, назначившему Гершеля королевским астрономом, последний предложил назвать планету «Георгиева звезда», однако, чтобы не нарушать традиционной связи с мифологией, было принято название «Уран», предложенное И. Боде. Окончательно данное название было утверждено в 1850г.

Первые немногочисленные наблюдения еще не позволяли достаточно точно определить параметры орбиты новой планеты, но, во-первых, число этих наблюдений (в частности, в России, Франции и Германии) быстро увеличивалось, и во-вторых, внимательное исследование каталогов прошлых наблюдений позволило убедиться, что планета неоднократно фиксировалась и прежде, но принималась за звезду, что также заметно увеличивало число данных. Так например Джон Флемстид в 1690г катализировал Уран как звезду 34 Тельца.

В течение 30 лет после открытия Урана острота интереса к нему периодически падала, но только на время. Дело в том, что повышение точности наблюдений выявило загадочные аномалии в движении планеты: оно то «отставало» от расчетного, то начинало «опережать» его. Теоретическое объяснение этих аномалий привело к новым открытиям — обнаружению заурановых планет.

1705-2

Уран почти полностью состоит из водорода и гелия. Подобно другим планетам-гигантам, атмосфера Урана в основном состоит из водорода (Н2-65%), гелия (Не-15%) и метана (СН4-15%), хотя их относительные вклады несколько ниже по сравнению с Юпитером и Сатурном с небольшим количеством различных молекулярных соединений. Атмосфера отражает около 85% падающего солнечного света. Атмосфера спокойна, мало течений, слабый ветер. Даже на крупных планах планеты, полученных "Вояджером", Уран имеет "спокойный", почти лишенный деталей вид, хотя и имеются некоторые намеки на слабые полосы, параллельные экватору. Инструменты "Вояджера" обнаружили отчасти более холодную полосу между 15 и 40-ка градусами широты, где температура на 2-3 K ниже.

img34343i

Синий цвет Урана является результатом поглощения красного света метаном в верхней части атмосферы. Вероятно, существуют облака других цветов, но они прячутся от наблюдателей перекрывающим слоем метана.  Подобно другим газовым планетам, Уран имеет полосы облаков, которые очень быстро перемещаются. Но они слишком плохо различимы и видимы только на снимках с большим разрешением, сделанных "Вояджером 2" . Недавние наблюдения с HST позволили рассмотреть большие облака. Есть предположение о том, что эта возможность появилась в связи с сезонными эффектами, ведь как не трудно сообразить, зима от лета на Уране сильно разняться: целое полушарие зимой на несколько лет прячется от Солнца!

Теоретическая модель строения Урана такова: его поверхностный слой представляет собой газожидкую оболочку, под которой находится ледяная (смесь водяного и аммиачного льда) мантия, а еще глубже — ядро из твердых пород ( по видимому каменное). Масса мантии и ядра составляет примерно 85-90% от всей массы Урана. Зона твердого вещества простирается до 3/4 радиуса планеты. Температура в центре Урана близка к 10000К при давлении 7-8 млн. атмосфер (одна атмосфера примерно соответствует одному бару). На границе ядра давление примерно на два порядка ниже (около 100 килобар). Эффективная температура, определяемая по тепловому излучению с поверхности планеты, составляет около 55К.

Вращение Урана обладает рядом отличительных особенностей: ось вращения почти перпендикулярна (98°) к плоскости орбиты, а направление вращения противоположно направлению обращения вокруг Солнца, то есть обратное. Северный полюс планеты ниже плоскости орбиты и в течение 20лет обращен к Солнцу.

Период собственного вращения Урана составляет приблизительно 17 час 14 мин. Существующий разброс при определении значений этого периода обусловлен несколькими причинами, из которых основными являются две: газовая поверхность планеты не вращается как единое целое и, кроме того, на поверхности Урана не обнаружено заметных локальных неоднородностей, которые помогли бы уточнить длительность суток на планете.

Магнитное поле планеты слабее чем у Земли (5/6) и со смещенным центром на 55º относительно центра планеты. Имеет радиационные пояса слабее земных.  Она необычна тем, что ось симметрии ее наклонена почти на 60 градусов оси вращения (у Земли этот угол составляет 12 градусов). Если бы так обстояло дело на Земле, то ориентирование с помощью компаса имело бы интересную особенность: стрелка почти совсем бы не попадала указателем на север или юг, а была бы нацелена на две противоположные точки 30-х параллелей. Вероятно, магнитное поле вокруг планеты генерируется движениями в сравнительно поверхностных областях Урана, а не в его ядре. Источник поля - неизвестен; существование гипотетического электропроводящего океана воды или аммиака пока не подтверждено исследованиями. Как на Земле, так и на других планетах, источником магнитного поля считают течения в расплавленных породах, расположенных недалеко от ядра.   Как у Земли, Юпитера и Сатурна, у Урана есть магнитный хвост, состоящий из захваченных полем заряженных частиц, растянувшийся на миллионы километров за Уран от Солнца. "Вояждер 2" "чувствовал" поле, по крайней мере, в 10-ти миллионах километров от планеты.

В 1977г у Урана была открыта серия узких колец, лежащих в экваториальной плоскости во время покрытия Ураном звезды 8-й звездной величины. Кольца вызвали небольшое падение наблюдаемой яркости этой звезды непосредственно до и сразу после ее покрытия диском планеты. Более поздние покрытия Беты Скорпиона и Сигмы Стрельца подтвердили полученный результат. Система колец впоследствии (в 1986г) была сфотографирована "Вояджером-2", когда были обнаружены еще два кольца, а общее их количество достигло одиннадцати.

uran_art_1

Уран имеет естественные спутники. Известно 27 спутников. Они все получили названия в честь персонажей из произведений Уильяма Шекспира и Александра Поупа. Два первых спутника — Титанию и Оберон — открыл в 1787 году  Уильям Гершель. Ещё два сферических спутника (Ариэль и Умбриэль) открыты были  в 1851 году Уильямом Ласселом. В 1948 Джерард Койпер открыл Миранду. Остальные спутники были открыты после 1985 года, во время миссии «Вояджера-2», или с помощью усовершенствованных наземных телескопов.

Ura2

Уран, по данным на 2008 год, обладает 13 внутренними лунами. Внутренние спутники — это небольшие, тёмные объекты, схожие характеристиками и происхождением с кольцами планеты. Орбиты их лежат за внутренней стороной орбиты Миранды. Все внутренние луны глубоко связанны с Кольцами Урана, которые, возможно, представляют из себя результат распада одной или нескольких маленьких внутренних лун. Две самые внутренние луны (Корделия и Офелия) служат кольцу ε «пастухами», а небольшая луна Маб, возможно, источник наиболее удалённого кольца μ. Пак кружит на орбите между Пердитой и Мабом, и, возможно, представляет собой нечто вроде переходного объекта между внутренними лунами и крупными спутниками Урана.

Все внутренние луны — тёмные объекты; их геометрическое альбедо не превышает 10 %. Внутренние луны состоят из водяного льда с примесью тёмного материала—возможно преобразованной радиацией органикой. Небольшие внутренние спутники постоянно выступают друг для друга в качестве возмущающих факторов. Система является хаотичной и, вероятно, непостоянной.

Расчёты показывают, что внутренние спутники выступают в роли возмущающих факторов друг для друга в случае, если их орбиты пересекаются; в конечном счёте, это может привести к столкновениям между ними. Дездемона может столкнуться с Крессидой или Джульеттой в последующие 100 миллионов лет[10].

Сатурн

saturn-3643680012

САТУРН (астрономический знак H), шестая от Солнца планета-гигант Солнечной системы. Сатурн - один из четырех "газообразных гигантов", уступающий в размере только Юпитеру. Его экваториальный диаметр в 9,4 раза больше земного, а масса превышает земную в 95 раз. Максимальное и минимальное расстояния от Солнца равны приблизительно 10 и 9 а.е. Расстояния от Земли меняются от 1,2 до 1,6 млрд. км. Наклон орбиты планеты к плоскости эклиптики 2°29,4'. Угол между плоскостями экватора и орбиты достигает 26°44'. Средняя плотность вещества планеты составляет 0,7 от плотности воды. Большая часть массы представлена водородом и гелием. Планета не имеет четкой твердой поверхности, оптические наблюдения затрудняются непрозрачностью атмосферы. Для экваториального и полярного радиусов приняты значения 60 тыс. км и 53,5 тыс. км. На земном небе Сатурн выглядит как желтоватая звезда, блеск которой меняется от нулевой до первой звездной величины.

Поверхность Сатурна (облачный слой), как и Юпитера, не вращается как единое целое. Тропические области в атмосфере Сатурна обращаются с периодом 10 ч 14 мин земного времени, а на умеренных широтах этот период на 26 мин больше. В результате появляется существенное сжатие у полюсов: полярный и экваториальный диаметры отличаются на 11%. До 1980г были известны десять спутников Сатурна. С тех пор было открыто еще несколько. Одна часть была обнаружена в результате телескопических наблюдений в 1980г, когда система колец была видна с ребра (и благодаря этому наблюдениям не мешал яркий свет), а другая - при пролетах АМС "Вояджер-1 и -2" в 1980 и 1981гг. После чего у планеты стало 17 спутников. В 1990г открыт 18-й спутник, а в 2000 году еще 12 небольших спутников, по всей видимости захваченных планетой астероидов. В начале 2003г открыт небольшой спутник.

Наиболее поразительная структура Сатурна - его система колец. Кольца лежат в экваториальной плоскости планеты, которая наклонена к орбите обращения вокруг Солнца под углом 27°. Кольца можно легко увидеть даже в небольшой телескоп. По мере изменения относительного расположения Земли и Сатурна кольца предстают под разными углами, иногда полностью открываясь, а иногда (при наблюдении с ребра) почти исчезая из вида (период 29,5 лет). Кольца Сатурна имеют ряд зон различной яркости, разделенных темными промежутками. Наиболее заметные промежутки - щели Кассини и Энке. Полученные "Вояджерами" изображения колец показали, что они состоят из многих тысяч узких концентрических колечек, так что кольца кажутся прорезанными многочисленными желобками. В толщину они имеют только один километр и состоят из огромного количества частиц и каменных осколков, размер которых составляет, возможно, от микрона до сотни метров.
По внутреннему строению и составу Сатурн сильно напоминает Юпитер. В частности, на Сатурне в экваториальной области также существует Красное Пятно, хотя оно и меньших размеров, чем на Юпитере.

На две трети Сатурн состоит из водорода. На глубине, примерно равной R/2, то есть половине радиуса планеты, водород при давлении около 300 ГПа переходит в металлическую фазу. По мере дальнейшего увеличения глубины, начиная с R/3, возрастает доля соединений водорода и оксидов. В центре планеты (в области ядра, образованное твердыми породами или смесью твердых пород и льда) температура порядка 20000 К. Масса ядра в десять или пятнадцать раз превышает массу Земли.

Внешняя половина планеты состоит из мощной атмосферы, а видимые детали представляют собой полосы облаков в верхних атмосферных слоях. В состав атмосферы входят СН4, Н2, Не (7%), NН3. Температура в средних слоях атмосферы около 100 К. Для облаков на Сатурне большие цветовые контрасты не характерны. Однако иногда наблюдается штормовая активность. В конце сентября 1990г в атмосфере появилось большое Белое пятно, расширявшееся в течение нескольких недель, пока оно не заняло значительную часть экваториальной области планеты. Это извержение вещества из более низких атмосферных слоев было очередным в цепи аналогичных явлений, происходящих с 30-летним циклом, соответствующим периоду обращения Сатурна. Подобные пятна отмечались в 1876, 1903, 1933 и 1960гг около середины сатурнианского лета в северном полушарии. Время от времени происходят и более слабые извержения. Одно из них наблюдалось Космическим телескопом "Хаббл" в 1994г. Компьютерная обработка изображений, полученных "Вояджером-1 и -2" в 1980 и 1981гг, выявила сложные циркуляционные потоки, подобные наблюдаемым на Юпитере. В 1980-1981г   на основе сделанных ими фотографий была вычислена скорость экваториального ветра, она составила около 1700 км/ч. В 1996-2002 годах за Сатурном наблюдали с помощью космического телескопа Hubble. И выяснилось, что на экваторе Сатурна скорость ветра неожиданно упала до 990 км/час. Почему это произошло, пока неизвестно. Наблюдаемые ветры симметричны относительно экватора, уменьшающиеся в скорости по удалении от экватора и дуют в большей части в восточном направлении (направлении вращения планеты).
У Сатурна имеются мощные радиационные пояса и сильное магнитное поле, несколько уступающие Юпитеру.

Для исследования  системы Сатурна, включая планету, кольца, магнитосферу и некоторые из лун  в октябре 1997г запущен третий КА к Сатурну АМС "Кассини".  Используя гравитационную поддержку Венеры (апрель 1998г и июнь 1999г), Земли (август 1999г) и Юпитера (декабрь 2000г) КА должен войти в систему Сатурна в 2004г. Объединенный проект NASA/ESA по зондированию предусматривает работа на орбите вокруг Сатурна в течение четырех лет.  Одной из главных целей проекта является изучение луны Сатурна Титана. На борту АМС "Кассини" находится зонд "Гюйгенс" - набор инструментов, который будет парашютирован через атмосферу Титана и опустится на его поверхность.

Характеристики планеты Сатурн

Средняя удаленность планеты от Солнца (а.е.) 9,5388 (1426980000км)
Эксцентриситет орбиты 0,0556
Наклон орбиты к плоскости эклиптики (градусы) 2,488
Орбитальная скорость (км/с) 9,64
Сидерический период обращения планеты (лет) 29,458 (10759,5 дней)
Синодический период (дней) 378,09
Максимальная видимая звездная величина -0,47
Общая массаa 3498,5
Массаb (Земля=1) 95,181
Массаb (килограмм) 5,688×1026
Экваториальный радиусf (Земля=1) 9,449
Экваториальный радиус (км)f 60268
Сжатиеc 0,0980
Средняя плотность (г/см3) 0,68
Ускорение силы тяжести на экваторе (м/с2) 9,06
Вторая космическая скорость на экваторе (км/с) 35,5
Сидерический период вращения (часов) 10,233
Период обращения вокруг оси (часов) 10.675
Наклонение экватора к орбите (градусы) 26,73
Число открытых спутников 31

aОтношение массы Солнца к массе планеты (включая атмосферу и массу спутников).
bБез учета массы спутников.
cСжатие равно (Re-Rp)/Re, где Re и Rp - экваториальный и полярный радиусы планет (соответственно).
fДля внешних планет не имеющих твердой поверхности радиус соответствует уровню атмосферного давления в 1 бар.

http://valzhi.ucoz.ru/_ph/4/704284378.jpg

Спутники Сатурна

Сатурн имеет 62 естественный спутник с подтверждённой орбитой, 53 из которых имеют собственные названия. Большая часть спутников имеет небольшие размеры и состоит из горных пород и льда, что подтверждает их главные особенности: высокая способность к отражению солнечного света. 23 спутника Сатурна — регулярные, остальные 38 — нерегулярные. Нерегулярные спутники были классифицированы по характеристикам своих орбит на три группы: инуитскую, норвежскую и гальскую.

Самый большой спутник — Титан, диаметр которого более 5 100 км, он является вторым после Ганимеда по величине спутником в Солнечной системе. Титан — единственный спутник, обладающий очень плотной атмосферой, в 1,5 раза больше Земной, и состоящей в основном из 98 % азота, с умеренным содержанием метана. Учёные предполагают, что условия на этом спутнике Сатурна схожи с теми, которые существовали на нашей планете 4 миллиарда лет назад, когда на Земле только зарождалась жизнь.

http://astronom4.narod.ru/sols/pl/sat/sp/04070301.jpg

Юпитер

http://img-fotki.yandex.ru/get/11/kolodar.4/0_6306_c7e0a195_XL

ЮПИТЕР (астрологический знак G), пятая планета от Солнца и самая большая планета-гигант Солнечной системы. Его экваториальный диаметр равен 143884 км, что в 11,209 раз превышает диаметр Земли и составляет 0,103 диаметра Солнца. Форма Юпитера не совсем сферическая, поскольку планета состоит из газа и жидкости и быстро вращается. Полярный диаметр Юпитера равен 133708 км. По объему Юпитер эквивалентен 1319 объемам Земли. Для наблюдателя с Земли это вторая по яркости планета после Венеры. Среднее расстояние от Солнца 5,2 а. е. (778,3 млн. км, минимальное  4,95 а. е., максимальное — 5,45 а. е.), сидерический период обращения 11,9 года, период вращения (облачного слоя близ экватора) около 10 часов. Юпитер движется вокруг Солнца по близкой к круговой эллиптической орбите, плоскость которой наклонена к плоскости эклиптики под углом 1°18,3'. Экватор наклонен к плоскости орбиты под углом 3°5'; из-за малости этого угла сезонные изменения на Юпитере выражены весьма слабо. Расстояние Юпитера от Земли меняется в пределах от 188 до 967 млн. км. Масса Юпитера в 317,8 раз превосходит массу Земли и в 2,5 раза больше массы всех остальных планет, вместе взятых, но при этом средняя плотность равна 1,33 г/см3, то есть в 4 раза меньше, чем у Земли. В противостоянии Юпитер виден как чуть желтоватая звезда -2,6 звездной величины; из всех планет уступает в блеске только Венере и Марсу во время великого противостояния последнего.

СТРОЕНИЕ. Юпитер представляет собой гигантский газовый шар, диаметр которого в десять раз превышает диаметр Земли, составляя одну десятую диаметра Солнца. Его масса равна 0,1% массы Солнца, а химический состав (по числу молекул) очень близок к составу Солнца: 90% водорода (находящегося на Юпитере в молекулярной форме) и 10% гелия (в «солнечной» пропорции 3,4 : 1). Среди следовых газов наиболее существенны водяной пар, метан и аммиак. Под слоем облаков нет никакой твердой поверхности. Вместо этого ниже внешних слоев наблюдается (при увеличении давления с глубиной) постепенный переход от газа к жидкости (водно-аммиачной жидкой оболочкой). Затем следует резкий переход к металлической жидкости, в которой атомы лишены электронов. Радиус этого ядра порядка 1/10 радиуса планеты, масса ~ 0,3-0,4 ее массы, температура около 25000 К при давлении ~ 8000ГПа. Наличие источника внутренней энергии (тепло выделяется в результате медленного гравитационного сжатия Юпитера) позволяет планете излучать в 1,5 - 2 раза больше тепла, чем она получает от Солнца.

АТМОСФЕРА. При визуальных наблюдениях диск Юпитера кажется пересеченным чередующимися светлыми зонами и темными поясами. Состав атмосферы: H2, CH4, NH3, He. Согласно данным, полученным четырьмя космическими зондами, пролетевшими мимо Юпитера в 1973 - 1981гг ("Пионер-10 и -11", "Вояджер-1 и -2"), и АМС "Галилео", работающей на орбите планеты с 1995г, внутри этих полос наблюдается очень сложная система потоков. В каждом полушарии имеется пять или шесть таких полос, по направлению совпадающих с ветровыми течениями, вращающиеся вокруг оси планеты с различными угловыми скоростями. Быстрее всего вращается экваториальная зона — период ее обращения 9 ч 50 мин 30 с, что на 5 мин 11с меньше периода обращения полярных зон. Так быстро не вращается ни одна другая планета Солнечной системы. На Юпитере атмосферные процессы намного стабильнее чем на Земле. Пояса облаков на Юпитере сохраняются годами и вращаются вокруг планеты со скоростью 480 км/ч. Штормы, перед которыми земные ураганы покажутся лишь легким ветерком, могут бушевать десятилетиями. Активный облачный слой довольно тонок и составляет  сотую долю радиуса планеты. Относительно долговечными деталями планеты являются белые или цветные овалы.

Наиболее известная и самая заметная из таких деталей - Большое Красное Пятно, которое наблюдается уже около 300 лет. Находясь в умеренных южных широтах Юпитера оно медленно перемещается, делая за сто лет примерно 3 оборота.  По краям Красного Пятна располагаются облака, состоящие из аммиака. По предыдущим наблюдениям космической станцией Galileo, также принадлежащей NASA, граничные области Большого Красного Пятна вращаются с большой скоростью против часовой стрелки, в то время как внутренняя часть медленно вращается в противоположном направлении. За последнее время Большое Красное Пятно несколько изменилось. На фотографиях, полученных ранее космическими кораблями NASA Voyager и Galileo, Пятно окружает темная область, что указывает на отсутствие облаков вокруг него. Теперь же эту область заполнили светлые аммиачные облака.

http://forum.openarmenia.com/uploads/post-85-1234368273.jpg

Последние исследования показывают что, чем дальше планета от Солнца, тем менее турбулентная ее атмосфера, тем менее интенсивно происходит теплообмен между соседними областями и рассеивается меньше энергии. В тонкой атмосфере больших планет физические процессы таковы, что энергия из отдельных мелких областей переносится в более крупные и скапливается затем в глобальные воздушные структуры - зональные потоки. Эти потоки и являются поясами облаков, которые можно разглядеть даже в небольшой телескоп. Соседние потоки движутся в противоположных направлениях. Их цвет может слегка отличаться в зависимости от химического состава. Цветные облака находятся в самых высоких слоях Юпитера (их глубина составляет около 0,1-0,3% радиуса планеты). Происхождение их окраски остается тайной, хотя, по-видимому, можно утверждать, что она связана со следовыми составляющими атмосферы и свидетельствует о происходящих в ней сложных химических процессах. На основе исследования в конце 2000г зондом Cassini выяснено, что светлые полосы и Большое Красное Пятно (гигантский шторм с размером большой оси около 35 тыс. км, а малой оси - 14 тыс. км) связаны с нисходящими потоками (вертикальная циркуляция атмосферных масс); облака здесь выше, а температура ниже, чем в остальных областях. Цвет облаков коррелирует с высотой: синие структуры - самые верхние, под ними лежат коричневые, затем белые. Красные структуры - самые низкие. Красноватый оттенок планеты приписывают главным образом присутствию в атмосфере красного фосфора и, возможно, органике, возникающей благодаря электрическим разрядам. В области, где давление порядка 100 КПа, температура составляет около 160 К. В атмосфере Юпитера замечены грозы. Температура верхних облаков составляет –130оС. Юпитер выделяет на 60% больше энергии, чем получает от Солнца. Атмосфера отражает 45% падающего солнечного света. Установлено также наличие ионосферы, протяженность которой по высоте — порядка 3000 км.

Зонд с АМС "Галилео" в 1995г парашютировал сквозь верхние слои атмосферы Юпитера, опустившись на 150 км вглубь атмосферы, передавая данные относительно состава и физических условий среды. Наземные наблюдения места вхождения зонда показали, что оно, по-видимому, было относительно свободно от облаков. Этим можно объяснить, почему не было получено почти никаких подтверждений существования ожидаемых трех слоев облаков (состоящих на самых больших высотах из кристаллов аммиака, гидросульфида аммония в середине, а внизу - из водяных и ледяных кристаллов). Скорость ветра, достигающая 530 км/час, оказалась даже больше, чем ожидалось. В то же время содержание гелия составило только около половины ожидаемого. Вероятное объяснение этого явления - увеличение концентрации гелия к центру планеты.

В 1997г космический телескоп Hubble впервые обнаружил Большое Темное пятно возле северного полюса планеты. В конце 2000г зонд Cassini с 1 октября по 15 декабря фотографировал пятно во всех подробностях с помощью УФ-камеры. В течение 11 недель это пятно росло в размерах до вдвое превышающее Землю, закручивалось, темнело и меняло форму. Потом, когда зонд Cassini стал удаляться от Юпитера пятно стало бледнеть. По мнению специалистов, Темное пятно на Юпитере может быть относительно кратковременным "облачным" явлением, поэтому телескоп Hubble и видел его лишь однажды. И если бы Cassini пролетал мимо Юпитера на месяц или два позже, то он, может быть, не увидел бы никакого пятна. Есть и другое мнение. Возможно Темное пятно является каким-то побочным эффектом полярных сияний на Юпитере. Там они в сотни и тысячи раз ярче, чем на Земле, ведь магнитное поле Юпитера намного сильнее земного, а сам Юпитер является мощным источником электронов и ионов (для земных полярных сияний заряженные частицы поставляет Солнце).

МАГНИТНОЕ ПОЛЕ И РАДИОИЗЛУЧЕНИЕ.

Радиоизлучение Юпитера, обнаруженное в 1955г, послужило первым признаком наличия у него сильного магнитного поля, которое в 4000 раз сильнее земного. Его магнитный дипольный момент почти в 12000 раз превосходит дипольный момент Земли, но так как напряженность магнитного поля обратно пропорциональна кубу радиуса, а он у Юпитера на два порядка больше, чем у Земли, то напряженность у поверхности Юпитера выше, по сравнению с Землей, только в 5-6 раз. Магнитная ось наклонена к оси вращения на (10,2 ± 0,6)°. Дипольная структура магнитного поля доминирует до расстояний порядка 15 радиусов планеты. Юпитер обладает обширной магнитосферой, которая подобна земной, но увеличена примерно в 100 раз. Закручивание электронов вокруг силовых линий порождает радиоизлучение, причем задержанные около планеты электроны дают синхротронное излучение в диапазоне дециметровых волн. Декаметровое излучение, наблюдаемое только от некоторых областей планеты, связано с взаимодействием ионосферы Юпитера со спутником Ио, орбита которого проходит внутри огромного плазменного тора. Это взаимодействие порождает также полярные сияния. Обнаруженное "Вояджерами" излучение в километровых длинах волн возникает в высоких широтах планеты и в плазменном торе.

Зонд обнаружил также интенсивный радиационный пояс.

Наблюдая 18 декабря 2000 года в течение 10 часов, удалось обнаружить пульсирующий источник рентгеновского излучения в полярных районах верхних слоев атмосферы Юпитера с помощью оборудования орбитального телескопа "Chandra". Вспыхивает наподобие маяка каждый 45 минут. Никакие из существующих ныне теорий не могут объяснить ни природу возникновения излучения, ни его пульсирующий характер.

Открыты таинственные следы, оставляемых ближайшим к Юпитеру крупным спутником, Ио, в ионосфере планеты - в области, расположенной над атмосферой, в которой и образуются полярные сияния. Удалось также обнаружить, что два других галилеевых спутника - Ганимед и Европа - также оставляют подобные "магнитные следы" овальной формы, хотя и меньшие по интенсивности. О том, что Ио, знаменитый своей исключительной вулканической активностью, оставляет подобные следы, ученым было известно и ранее. Удивительным оказалось то, что такие же следы оставляют и два других спутника, на которых вулканической деятельности не зафиксировано. Вопрос о том, "чертит" ли в магнитосфере Юпитера и свой след последний из крупных спутников планеты - Каллисто - останется, по всей видимости, загадкой еще на многие годы. Зонд для исследования Плутона, вопрос о целесообразности отправки которого изучается в настоящее время, должен пролететь по пути к цели назначения мимо Юпитера и тем самым дать шанс продолжить изучение планеты. Однако финансирование этой интереснейшей исследовательской программы все еще остается под вопросом.

http://www.vokrugsveta.ru/img/cmn/2006/11/20/001.jpg

СПУТНИКИ И КОЛЬЦА ПЛАНЕТЫ.

Первые четыре спутника (Ио, Европа, Ганимед, Каллисто) были открыты Г. Галилеем еще в 1610г. Это открытие послужило мощным толчком к утверждению гелиоцентрической системы мира Коперника, явившись яркой моделью этой системы. После пролета "Вояджеров" к 1980г стало известно шестнадцать естественных спутников, вращающихся вокруг Юпитера. Они разделяются на четыре группы. По круговым орбитам в экваториальной плоскости движутся четыре маленьких внутренних спутника (Метида, Адрастея, Амальтея и Теба) и четыре больших галилеевых спутника (Ио, Европа, Ганимед и Каллисто). Третья группа (Леда, Гималия, Лиситея и Элара) - маленькие спутники на круговых орбитах, наклоненных под углом 25° - 29° к экваториальной плоскости и лежащих на расстоянии 11 - 12 млн. км от Юпитера. Внешняя группа (Ананке, Карме, Пасифе и Синопе - названы по именам возлюбленных Юпитера) - маленькие спутники с обратным движением по орбитам. Эти орбиты являются относительно вытянутыми эллипсами с существенным наклонением к экваториальной плоскости и лежат на расстоянии 21 - 24 млн. км от Юпитера. Полагают, что это захваченные планетой астероиды. Четыре галилеевых спутника и их движения по орбите можно легко увидеть в маленький телескоп или бинокль. К концу 2000 года было открыто 10 небольших спутников и общее количество спутников Юпитера стало 28. В конце ноября - начале декабря 2000 года профессором Дэвидом Джевиттом (David Jewitt) и аспирантом С.Шеппардом (S. Sheppard) из Гавайского университета, которые вели наблюдения с помощью камеры 2,2-метрового телескопа на горе Мауна Кеа. Девять лун находятся на расстоянии 21-24млн. км от планеты и  вращаются в обратном направлении по вытянутым эллиптическим орбитам с наклонением от 15о до 30о, а одна на удалении 13млн. км  и вращается в прямом направлении. Эта же команда в 2001-2003гг ( к 1 июня2003г) довела общее число открытых спутников до 61. Это небольшие луны до 4 км в диаметре по видимому захваченные Юпитером уже позже.

Предположение о существовании слабого кольца вокруг Юпитера было впервые высказано на основании данных, полученных "Пионером-11" в 1974г. После проведенного "Вояджером" непосредственного фотографирования это предположение подтвердилось. Огромного плоского кольца из пыли и некрупных камней, которое при ширине в 6 км и толщине в 1 км простирается до десятков тыс. км от верхней границы облаков. Основная часть кольца лежит на расстоянии 1,72 - 1,81 радиуса от центра планеты. Исходя из характеристик кольца можно допустить, что оно состоит, главным образом, из частиц микронных размеров. Постоянным источником пополнения кольца могут быть движущиеся по орбите объекты размером с булыжник, постоянно бомбардируемые быстрыми частицами, а также спутники планеты.

В результате обработки данных, полученные аппаратом Cassini во время пролета мимо Юпитера в конце 2000 - начале 2001 года, ученые университета имени Джонса Хопкинса в Мэриленде пришли к выводу, что вокруг Юпитера существует  гигантское кольцо водного пара.  Водяной пар появился вокруг планеты в результате постоянных бомбардировок микрометеоритами ледяной поверхности Европы, одного из крупнейших спутников Юпитера.

Характеристики планеты Юпитер

Средняя удаленность планеты от Солнца (а.е.) 5,2028  (778330000км)
Эксцентриситет орбиты 0,0483
Наклон орбиты к плоскости эклиптики (градусы) 1,308
Орбитальная скорость (км/с) 13,06
Сидерический период обращения планеты (лет) 11,8623 (4332,71 дней)
Синодический период (дней) 398,88
Максимальная видимая звездная величина -2,59
Общая массаa 1047,355
Массаb (Земля=1) 317,938
Массаb (килограмм) 1,900×1027
Экваториальный радиусf (Земля=1) 11,209
Экваториальный радиус (км)f 71492
Сжатиеc 0,0649
Средняя плотность (г/см3) 1,33
Ускорение силы тяжести на экваторе (м/с2) 22,88
Вторая космическая скорость на экваторе (км/с) 59,6
Сидерический период вращения (часов) 9,841
Период обращения вокруг оси (часов) 9,925
Наклонение экватора к орбите (градусы) 3,12
Число открытых спутников 61

aОтношение массы Солнца к массе планеты (включая атмосферу и массу спутников).
bБез учета массы спутников.
cСжатие равно (Re-Rp)/Re, где Re и Rp - экваториальный и полярный радиусы планет (соответственно).
dЗначения в скобках могут отличаться более чем на 10 процентов.
fДля внешних планет не имеющих твердой поверхности радиус соответствует уровню атмосферного давления в 1 бар.

Спутники Юпитера

На сегодняшний день учёным известны 63 спутника Юпитера; это наибольшее число открытых спутников среди всех планет Солнечной системы. Кроме того, у Юпитера есть система колец.

В 1610 году Галилео Галилей, наблюдая Юпитер в телескоп, открыл четыре наиболее крупных спутника — Ио, Европа, Ганимед и Каллисто, которые сейчас носят название «галилеевых». Они ярки и вращаются по достаточно удалённым от планеты орбитам, так что их легко различить даже в полевой бинокль. Первенство в открытии спутников оспаривал также немецкий астроном Симон Мариус, который позднее дал им названия, взяв имена из древнегреческих мифов.

Благодаря наземным наблюдениям системы Юпитера, к концу 1970-х годов было известно уже 13 спутников. В 1979 году, совершая пролёт мимо Юпитера, космический аппарат «Вояджер-1» обнаружил ещё три спутника.

Начиная с 1999 года, с помощью наземных телескопов нового поколения были открыты ещё 47 спутников Юпитера, подавляющее большинство из которых имеют диаметр в 2—4 километра.

Земля

0_1773_f1c757c1_L

ЗЕМЛЯ, третья от Солнца большая планета Солнечной системы. Земля принадлежит к группе земных планет, которая включает также Меркурий, Венеру и Марс. Земля часто сравнивается именно с этой группой, а также с Луной, поскольку их происхождение, структура и эволюция одинаковы. Благодаря своим уникальным, быть может, единственным во Вселенной природным условиям (хотя это сомнительно), стала местом, где возникла и получила развитие органическая жизнь.

По современным космогоническим представлениям Земля образовалась примерно 4,566 миллиарда лет (плюс-минус несколько миллионов) назад из газопылевого облака в котором зародилось Солнце. Проанализировав соотношение изотопов гафния и вольфрама в обломках метеоритов, образовавшихся из космической пыли, из марсианских метеоритов и земных камней, ученые пришли к новым оценкам (по старому примерно 60 млн.лет), согласующимся с компьютерными моделями. "Образование ядра, а следовательно, и планет, похожих на Землю, закончилось в первые 30 миллионов лет после рождения Солнечной системы", - заключил 30.08.2002г  Торстен Клайн из Мюнхена (Германия).

Примерно 3,8 млрд. лет назад возникли условия, благоприятные для возникновения жизни. По мнению американских исследователей, самое раннее из известных науке падений крупных метеоритов на Землю произошло 3 миллиарда 470 миллионов лет назад (с погрешностью не более плюс-минус 2-х миллионов лет по возрасту циркона - одного из самых стойких в природе минералов). Согласно подсчётам космический пришелец имел диаметр около 20-ти километров и вызвал на молодой планете катастрофические разрушения, включая, судя по всему, даже те трещины в земной коре, которые поныне делят её на тектонические плиты. Считается, что Земля в тот период была почти полностью покрыта водой, а единственной формой жизни на ней были бактерии. На их дальнейшую эволюцию эта космическая катастрофа повлияла мало.

Для более позже развитой жизни частичное исчезновение (около 380 (погибло 40% всех обитателей океана),  251,  214 - Канаде: удар пришелся на территорию современного Квебека, где до сих пор сохранился кратер диаметром в 100 километров и 65 миллионов лет назад- точнее последние исследования дают возраст  кратера Чиксулуб (Chicxulub)  в Мексике  диаметром 180 км в  65,5 плюс-минус 0,6 млн. лет) объясняется тем, что на Землю упал метеорит (их диаметры были порядка 6-12 км) и последствия имели глобальный характер для Земли. В результате второго катаклизма 90 % обитателей моря и 70 % животных были буквально стерты с лица нашей планеты, а последний уничтожил 75% всего живого и  положил конец эпохе динозавров (правда может был двойной удар по Земле, так как возраст метеоритного кратера Болтыш на Украине, чей диаметр 24 км датирован приблизительно в 65,2 плюс-минус 0,6 млн. лет).

Правда есть мысль, что возможно появление жизни на Земле после космической катастрофы (падения астероида, кометы), происшедшей 200 миллионов лет назад в жизни Земли. Многие ученые полагают, что Земле за всю ее историю пришлось пережить несколько столкновений с астероидами и  после каждого катаклизма на нашей планете начинала развиваться жизнь, а затем опять происходила почти полная "стерилизация" нашей планеты. Особенно в ранний период ее развития, приходилось сталкиваться с весьма крупными небесными телами. Однако другие "каменные гости" - примерно в несколько километров в диаметре - способствовали нагреву земной атмосферы до 100 градусов Цельсия. При этом большая часть океанов после столкновения с астероидом испарялась, а оставшаяся вода была почти кипятком. Единственными организмами, имевшими шансы выжить после катастрофы, были бы так называемые высокотемпературные - то есть, "термостойкие" бактерии. Они, вероятно, зарывались в землю, а после того, как планета немного остывала, начинали активно размножаться. Впоследствии такие микробы мутировали и давали начало новым формам жизни.

Группа ученых под руководством Ганса Кепплер из германского университета города Тюбинген считает, что  выброс углерода в атмосферу в форме диоксида углерода приводит к проявлению в гигантских масштабах тепличного эффекта, который является причиной неконтролируемого потепления на планете. Если углеродистые соединения поднимутся в земной мантии на глубину 40-60 км, произойдет процесс разложения, что приведет к выходу диоксида углерода, который через трещины в земной поверхности проникнет в атмосферу. Подобные явления, сопровождавшиеся резким изменением концентрации двуокиси углерода в атмосфере, уже имели место в различные эпохи развития планеты. Так, в конце пермского периода, 245 млн лет назад, 96% обитателей океанов и три четверти живых существ на суше погибли. В более поздний период, приблизительно 208 млн лет назад, в конце триасового периода, снова неожиданно погибла половина живых существ на планете.

Ряд ученых считают, что вспышка близкой к Земле сверхновой могла привести к уничтожению жизни. Исследование слоев с  возрастом в 3 млн. лет, а второго - в 4-6 млн. лет, к которым относятся два до сих пор необъясненных случая массового исчезновения морских форм жизни, которые, как известно, появились на земле раньше сухопутных, показало, что природное железа-60 (радиоактивного изотопа железа)  образовалось под влиянием космических лучей необычно высокой интенсивности, что наводит на мысль о вспышке сверхновых в одной из относительно молодых и близких к Солнцу звездных подгрупп.  В результате мог быть значительно поврежден озоновый слой, из-за чего нашей планеты оказалась незащищенной от жесткого ультрафиолетового излучения Солнца. Например, по расчетам специалистов, вспышка сверхновой на расстоянии 130 световых лет от Земли могла привести к уменьшению толщины озонового слоя на 60% (Но последние оценки Нила Герельса из Goddard Space Flight Center показывают, что в этом случае сверхновая должна была взорваться на расстоянии не более 25 св.лет). В результате под действием УФ-лучей погибла большая часть морского планктона, вслед за которым из-за нарушения пищевой цепи исчезли и другие морские организмы.

Нельзя исключать возможности возникновения жизни на Земле привнесенной из космоса с помощью метеоритов (в них обнаружены не только органические вещества, но и сахар), как впрочем и воды на Земле по мнению Луиса Фрэнка (Louis Frank) из Университета штата Айова, который утверждает, что им найдено новое доказательство в поддержку его теории появления на Земле воды занесенной небольшими кометами, в изобилии миллиарды лет назад падавшими на Землю.

В истории Земли было несколько периодов глобального потепления, самый древний из которых имел место 135 миллионов лет назад. Осадочные породы свидетельства бывших в истории Земли  ранее неизвестных периодов глобального потепления. Одно из потеплений, скорее всего вызванных выбросами метана, произошло примерно 55 миллионов лет назад. Оно продолжалось около 200 тысяч лет и привело к гибели от 30% до 50% всех форм глубинно-океанической жизни, но при этом стимулировало появление новых видов, обитающих у поверхности.

20 - 22,5 миллиона лет Земля изменила свою орбиту и это вызвало глобальное изменение климата на нашей планете. После достаточно продолжительного периода потепления и таяния снегов, пришло временное похолодание. Такого мнения придерживаются специалисты Калифорнийского университета во главе с Джеймсом Зачосом (James Zachos). Гипотеза о связи между климатом Земли и изменением параметров ее орбиты не нова [выдвинута в 20-х годах прошлого века астрофизиком Милатином Миланковичем (Milutin Milankovitch)]. Но американским специалистам удалось получить ряд неожиданных результатов. Так оказалось, что около 23 миллионов лет назад произошло совпадение минимального значения эксцентриситета земной орбиты и периода минимального изменения наклонения оси вращения Земли. Продолжительность периода составила около 200 тысяч лет. Именно в эти годы земное лето мало чем отличалось от земной зимы, а разница в летних и зимних температурах на полюсах составляла всего несколько градусов. Антарктические льды за лето не успевали таять и произошло заметное увеличение их площади.

Астрономы из Университета Джонса-Хопкинса собрав воедино сведения из астрономии, геологии и палеонтологии, высказали гипотезу, что  около 2 млн лет назад озоновый слой Земли, который задерживает ультрафиолетовое излучение Солнца, буквально сдуло, унеся в космос. Это  привело к  экологической катастрофе в земных океанах. Свидетельства былой ликвидации озона были найдены при бурении океанского дна. Тогда был найден очень необычный изотоп железа, который, возможно, является остатком того вещества, которое было заброшено на Землю в результате взрыва сверхновой. Ну а палеонтологи обнаружили, что приблизительно 2 миллиона лет назад произошло массовое и никак на первый взгляд не объяснимое вымирание фитопланктона и других морских организмов. Взрыв сверхновой мог произойти в результате:
1) Близко от солнечной системы (на расстоянии 130 световых лет) около 2 млн.лет назад пролетело звездное скопление Scorpius-Centaurus OB, содержащее тысячи крупных короткоживущих звезд. В этом звездном скоплении взрывы сверхновых происходили довольно часто.
2) Второй кандидат в убийцы земного озона - это звезда Антарес, которая находится на расстоянии 160 световых лет, но она была существенно дальше кластера Scorpius-Centaurus OB.
.Homo sapiens («Человек разумный») как вид появился примерно около 2 млн.лет назад, а формирование современного типа человека произошло около 100 тыс. лет назад.

Земля - единственная из главных планет, которая является геологически активной. Крупномасштабные детали ее поверхности возникли в процессе создания, относительного движения, взаимодействия и разрушения небольшого числа (порядка десяти) корковых плит, составляющих литосферу планеты, которые скользят по лежащей ниже менее жесткой астеносфере. Столкновения плит приводят к появлению гор, а по границам плит лежат зоны сейсмической активности.
У Земли имеется единственный спутник —Луна. Ее орбита близка к окружности с радиусом около 384400 км. Но кроме того имеется еще один "компаньон" - это астероид 3753 (1986 ТО) со сложной орбитальной связью с Землей.

Форма, размеры и движение Земли

По форме Земля близка к эллипсоиду, сплюснутому у полюсов и растянутому в экваториальной зоне. Средний радиус Земли 6371,032 км.

Земля движется вокруг Солнца со средней скоростью 29,765 км/с по эллиптической, близкой к круговой орбите на среднем расстояние от Солнца 149,6 млн.км.  Период одного обращения по орбите 365, 24 солнечных суток.

Неравномерность движения Солнца по эклиптике:

Апогей 1-5 января, перемещение среди звезд 61'/сутки.

Перигей начало июля, перемещение 57'/сутки.

Вращение Земли вокруг собственной оси происходит со средней угловой скоростью 7,292115·10-5рад/с, что примерно соответствует периоду в 23 ч 56 мин 4,1 с. Ось вращения наклонена к плоскости эклиптики под углом 66° 33' 39'' (около 23°26' наклон между экваториальной плоскостью и эклиптикой принят с 1 января 1983г, когда наклон уменьшился до 23° 26' 29". Влияние прецессии и нутации приводит к его изменению в пределах от 21°55' до 24°18'). Этот наклон и годовое обращение Земли вокруг Солнца обуславливают исключительно важную для климата Земли смену времен года, а собственное ее вращение —смену дня и ночи. Вращение Земли из-за приливных воздействий неуклонно (хотя и очень медленно —на 0,0015 с за столетие) замедляется. Имеются и небольшие нерегулярные вариации продолжительности суток.

Положение географических полюсов меняется с периодом 434 суток с амплитудой 0,36''. Кроме того, имеются и небольшие сезонные их перемещения.

Поверхность Земли

Площадь поверхности Земли 510,2 млн. км2, из которых примерно 70,8% приходится на Мировой океан. Его средняя глубина около 3,8 км, максимальная (Марианская впадина в Тихом океане) равна 11,022 км; объем воды 1370 млн. км3, средняя соленость 35 г/л. Суша составляет соответственно 29,2% и образует шесть материков и острова. Она поднимается над уровнем моря в среднем на 875 м; наибольшая высота (вершина Джомолунгма в Гималаях) 8848 м.

Самая низкая точка планеты становится еще ниже. За период с 1930 по 1999 годы Мертвое моря опустилось с отметки 390 метров до 414 метров ниже уровня океана. Данные, полученные с помощью радара на спутниках, наблюдавших за регионом с 1992-го по 1999 год показали, что в среднем суша уходит вниз примерно на 2 сантиметра в год, хотя в некоторых районах эта цифра составляет 6 сантиметров. Формулируя кратко существо происходящих изменений, геологи и океанографы говорят, что вода уходит из Мертвого моря, из-за чего пористые скальные породы высыхают и проседают под весом верхних слоев.

Горы занимают свыше 1/3 поверхности суши. Пустыни покрывают около 20% поверхности суши, саванны и редколесья —около 20%, леса —около 30%, ледники —свыше 10%. Свыше 10% суши занято под сельскохозяйственными угодьями. Значительная часть северных территорий представляет собой вечную мерзлоту. За минувшие 20 лет с начала подробных космических исследований с 1981г Северное полушарие нашей планеты  стало гораздо зеленее.  Одной из возможных причин такого феномена специалисты называют глобальное потепление климата. Если бы лед и снег на Земле растаяли, то уровень Мирового океана поднялся более чем на 50м, что привело бы к затоплению гигантских территорий.

Результаты нового анализа данных, полученных спутниками НАСА к концу 2002г, свидетельствуют о том, что площадь вечных льдов в Арктике уменьшается со скоростью, намного превосходящей ее ранние оценки. В период с 1978 по 2000 гг. площадь ледяного покрова в Северном Ледовитом океане уменьшилась на 1,2 млн. км2, что примерно равно площади Британии. Скорость его таяния составляет около 9% в десятилетие. Измерения, проводившиеся в предыдущие годы, давали скорость таяния, составлявшую примерно 3% в десятилетие. В 2002 году ледяная шапка была наименьшей за всю историю наблюдений. Сокращение поверхности ледяного покрова Северного Ледовитого океана отмечается на фоне тенденции к повышению средней летней температуры воздуха в приполярных регионах в среднем на 1,2 градуса за десятилетний период. Наибольшая скорость таяния отмечалась в Чукотском море и море Бофорта, в северных районах Канады и на Аляске.

Последние исследования с помощью космических спутников показали, что по экваториальной линии происходит увеличение диаметра Земли с 1998 года , то есть планета становится чуть более приплюснутой (расширяться в зоне экватора). Ученые столь озадачены этим феноменом, что пока не могут дать ясный ответ, что происходит с нашей планетой  и чем это чревато.

К июлю 2002г специалисты NASA создали  уникальную карту. Эта самая точная и подробная современная карта мира. В трехмерной графике здесь отмечены города, реки, горы, пустыни и моря. Одним нажатием кнопки можно совершить восхождение на Эверест или побывать в пустыне Сахара. Причем показывается не сразу конечная точка, а весь маршрут движения. Над созданием этой карты NASA работала почти два года, обработав на компьютере данные, полученные топографическим шаттлом - более триллиона различных отметок земной поверхности.

img.cgi

Внутреннее строение Земли

СЛОЙ ТОЛЩИНА СОСТАВ
Кора 0-40 км Твердые кремниевые породы
Верхняя мантия 40-400км Полужидкие кремниевые породы
Переходная область 400-650км Жидкие кремниевые породы
Нижняя мантия 650-2890км Жидкие кремниевые породы
Внешнее ядро 2890-5150км Расплавленные железо и никель
Ядро внутреннее 5150-6378км Твердые железо и никель

Основную роль в исследовании внутреннего строения Земли играют сейсмические методы, основанные на исследовании распространения в ее толще упругих волн (как продольных, так и поперечных), возникающих при сейсмических событиях —при естественных землетрясениях и в результате взрывов. На основании этих исследований Землю условно разделяют на три области: кору, мантию и ядро (в центре). Внешний слой —кора —имеет среднюю толщину порядка 35 км. Основные типы земной коры —континентальный (материковый) и океанический; в переходной зоне от материка к океану развита кора промежуточного типа. Толщина коры меняется в довольно широких пределах: океаническая кора (с учетом слоя воды) имеет толщину порядка 10 км, тогда как толщина материковой коры в десятки раз больше.

Поверхностные отложения занимают слой толщиной около 2 км. Под ними находится гранитный слой (на континентах его толщина 20 км), а ниже —примерно 14-километровый (и на континентах, и в океанах) базальтовый слой (нижняя кора). Средние плотности составляют: 2,6 г/см3 —у поверхности Земли, 2,67 г/см3 —у гранита, 2,85 г/см3 —у базальта.

На глубину примерно от 35 до 2885 км простирается мантия Земли, которую называют также силикатной оболочкой. Она отделяется от коры резкой границей (так называемая граница Мохоровича, или «Мохо»), глубже которой скорости как продольных, так и поперечных упругих сейсмических волн, а также механическая плотность скачкообразно возрастают. Плотности в мантии увеличиваются по мере возрастания глубины примерно от 3,3 до 9,7 г/см3.

Последние исследования проведенные в Гарварде на основании сведения о более 300 тысяч землетрясений, произошедших в 1964-1994 годах, показали, что существует внутренняя часть внутреннего ядра - диаметром около 600 километров  с температурой в центре Земли до 7500К.

В коре и (частично) в мантии располагаются обширные литосферные плиты. Их вековые перемещения не только определяют дрейф континентов, заметно влияющий на облик Земли, но имеют отношение и к расположению сейсмических зон на планете. По планетарным понятиям поверхность Земли очень молода. Базальтовые породы, формирующие дно океанов, - одни из самых молодых. Докембрийские щиты, которые занимают около 10% поверхности, самые старые и наиболее близкие к покрытой кратерами поверхности других планет. Погодные процессы сгладили на поверхности Земли все следы имевшихся на ней когда-то кратеров, за исключением лишь нескольких.
Еще одна обнаруженная сейсмическими методами граница (граница Гутенберга) —между мантией и внешним ядром —располагается на глубине 2775 км. На ней скорость продольных волн падает от 13,6 км/с (в мантии) до 8,1 км/с (в ядре), а скорость поперечных волн уменьшается от 7,3 км/с до нуля. Последнее означает, что внешнее ядро является жидким. По современным представлениям внешнее ядро состоит из серы (12%) и железа (88%). Наконец, на глубинах свыше 5120 км сейсмические методы обнаруживают наличие твердого внутреннего ядра, на долю которого приходится 1,7% массы Земли. Предположительно, это железо-никелевый сплав (80% Fe, 20% Ni).

Химический состав в процентах к массе Земли
Мантия Ядро
SiO2 31,16 CaO 2,16 Fe 23,6
Mg 25,86 Na2O 0,39 Si 4,0
Fe2O3 5,55 FeO 0,31 Ni 3,6
Al2O3 2,44 остальные 1,16

В числе многих химических элементов, входящих в состав Земли, имеются и радиоактивные. Их распад, а также гравитационная дифференциация (перемещение более плотных веществ в центральные, а менее плотных в периферические области планеты) приводят к выделению тепла. Температура в центральной части Земли порядка 5000 °С. Максимальная температура на поверхности приближается к 60 °С (в тропических пустынях Африки и Северной Америки), а минимальная составляет около -90 °С (в центральных районах Антарктиды).

Давление монотонно возрастает с глубиной от 0 до 3,61 ГП. Тепло из недр Земли передается к ее поверхности благодаря теплопроводности и конвекции.

Плотность в центре Земли около 12,5 г/см3.

Атмосфера Земли

АТМОСФЕРА ЗЕМЛИ (от греч. atmos — пар и сфера), воздушная среда вокруг Земли, вращающаяся вместе с нею; масса ок. 5,15·1015 т. По плотности атмосферы она занимает промежуточное место между Венерой и Марсом. Она уникальна в том отношении, что обладает обширными запасами жидкой воды. Сложное взаимодействие между океаном, атмосферой и планетарной поверхностью определяет ее энергетический баланс и температурный режим. Облачный покров обычно закрывает около 50% поверхности, и теплота, остающаяся внутри атмосферы (парниковый эффект), поднимает среднюю температуру более чем на 30 градусов.
Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и другие газы. В нижних 20 км содержится водный пар (у земной поверхности — от 3% в тропиках до 2·10-5% в Антарктиде), количество которого с высотой быстро убывает. Углекислота - наиболее важная следовая компонента атмосферного воздуха. Высокая концентрация кислорода (возникшая примерно 2000 млн. лет назад) является прямым результатом существования растений. Присутствие кислорода позволило сформироваться в верхних слоях атмосферы озонному слою (на высоте 20-25 км), который экранирует поверхность планеты от солнечного ультрафиолетового излучения, вредного для жизни.
Выше 100 км растет доля легких газов, и на очень больших высотах преобладают гелий и водород; часть молекул разлагается на атомы и ионы, образуя ионосферу. Давление и плотность воздуха в атмосфере Земли с высотой убывают. В зависимости от распределения температуры атмосферу Земли подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу. Неравномерность ее нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли. Атмосфера Земли обладает электрическим полем.

Все типы свечения, возникающие в верхней атмосфере Земли (ночное свечение атмосферы), исключая тепловое излучение, полярные сияния, молнии и яркие следы метеоров. Спектр ночного свечения лежит в диапазоне от 100 нм до 22,5 мкм. Основная часть свечения возникает в слое толщиной от 30 до 40 км на типичных высотах в 100 км и представляет собой излучение на длине волны кислорода 558 нм. Из космического пространства свечение неба выглядит как зеленоватое светлое кольцо вокруг Земли.

ТРОПОСФЕРА (от греч. tropos — поворот и сфера), нижний, основной слой атмосферы до высоты 8-10 км в полярных, 10-12 км в умеренных и 16-18 км в тропических широтах. В тропосфере сосредоточено более 1/5всей массы атмосферного воздуха, сильно развиты турбулентность и конвекция, сосредоточена преобладающая часть водяного пара, возникают облака, развиваются циклоны и антициклоны - все происходящие здесь процессы играют определяющую роль для формирования погоды на планете. Температура в тропосфере падает с увеличением высоты. Тропосфера сверху ограничена тропопаузой, которая соответствует переходу к более устойчивым условиям лежащей выше стратосферы.

СТРАТОСФЕРА (от лат. stratum — слой и сфера), слой атмосферы, лежащий над тропосферой от 8-10 км в высоких широтах и от 16-18 км вблизи экватора до 50-55 км. Стратосфера характеризуется возрастанием температуры с высотой от -40 °С (-80 °С) до температур, близких к 0 °С, малой турбулентностью, ничтожным содержанием водного пара, повышенным по сравнению с ниже- и вышележащими слоями содержанием озона.

ОЗОН (от греч. ozon — пахнущий), О3, аллотропная модификация кислорода. Газ синего цвета с резким запахом,  tкип — 112 °С, сильный окислитель. При больших концентрациях разлагается со взрывом. Образуется из О2 при электрическом разряде (например во время грозы) и под действием ультрафиолетового излучения (в стратосфере под действием ультрафиолетового излучения Солнца). Основная масса О3 в атмосфере расположена в виде слоя — озоносферы — на высоте от 10 до 50 км с максимумом концентрации на высоте 20-25 км. Этот слой предохраняет живые организмы на Земле от вредного влияния коротковолновой ультрафиолетовой радиации Солнца. Поглощает свет с длиной волны от 240 до 270нм и сильно поглощает в интервале 200-320нм, в то время как кислород в основном поглощает до 170нм. Основная причина появления озона на Земле - молнии. В промышленности О3 получают действием на воздух электрического разряда. Используют для обеззараживания воды и воздуха.

ИОНОСФЕРА, верхние слои атмосферы, начиная от 50- 85 км до 600км, характеризующиеся значительным содержанием атмосферных ионов и свободных электронов. Атомы и молекулы в этом слое интенсивно ионизируются под действием солнечной радиации, в частности, ультрафиолетового излучения.  Перемещение заряженных частиц по магнитным силовым линиям к полярным областям на широтах от 60 до 75° приводит к появлению полярных сияний. Верхняя граница ионосферы — внешняя часть магнитосферы Земли. Причина повышения ионизации воздуха в ионосфере — разложение молекул атмосферы газов под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения. Ионосфера оказывает большое влияние на распространение радиоволн. Состоит ионосфера из мезосферы и термосферы.

ПОЛЯРНОЕ СИЯНИЕ -быстро изменяющиеся разноцветные картины свечения, наблюдаемые время от времени на ночном или вечернем небе, обычно в высокоширотных областях Земли (как на севере, так и на юге). Зеленый и красный цвета соответствуют эмиссионным линиям атомов кислорода и молекул азота, которые возбуждаются энергичными частицами, приходящими от Солнца. Полярные сияния происходят на высотах порядка 100 км.
Во время полярных сияний в ионосфере протекают многочисленные процессы, такие как возмущения геомагнитного поля, электрические ионосферные токи и рентгеновское излучение. В невидимых частях спектра излучается гораздо больше энергии, чем в видимом диапазоне. Появление полярных сияний связано с солнечным циклом, вращением Солнца, сезонными изменениями и магнитной активностью.
Полярные сияния принимают несколько основных форм. Спокойные дуги или полосы шириной в несколько десятков километров простираются с востока на запад на расстояния до 1000 км. Полосы могут сворачиваться, принимая спиральную или S-образную форму. Можно увидеть и лучи, идущие вдоль магнитного поля. Пятна полярных сияний - это отдельные светящиеся области неба без образования каких-либо форм. Изредка встречаются обширные полярные сияния в форме драпри.

МЕЗОСФЕРА находится примерно до 80-85 км, над которой наблюдаются (обычно на высоте около 85 км) серебристые облака. Здесь температура с высотой уменьшается, достигая -90°C у верхней границы (мезопаузы).

Светлые голубоватые облака в летнем сумеречном небе. Они возникают в верхней атмосфере на высотах около 80 км и по структуре довольно разнообразны.
СЕРЕБРИСТЫЕ облака очень тонки и рассеивают лишь малую часть падающего на них солнечного света, так что с Земли днем или в начале сумерек их нельзя заметить. Так как они появляются только в летнее время, их невозможно наблюдать в самых высоких широтах, где небо никогда не становится достаточно темным. В то же время серебристые облака - явление высокоширотное, т.к. диапазон широт, в которых они практически наблюдаются, весьма узок (от 50°до 65°). Облака образуются в присутствие ядер конденсации, на которых вода превращается в лед. Точно не известно, каковы эти ядра (ионы, возникающие под действием солнечного ультрафиолета, или микрометеоритные частицы). Главное условие возникновения серебристых облаков - достаточно низкая температура, которая на высотах 80-90 км должна быть около 120 K (-150° C). Облака возникают в результате воздушных течений от одного полюса к другому и не зависят от уровня солнечной радиации. Имеются наблюдения, позволяющие предположить, что в течение последних десятилетий серебристые облака возникают чаще. Это связано с возрастанием концентрации водяных паров в верхней атмосфере из-за увеличения количества метана. Частота возникновения серебристых облаков изменяется с циклом солнечной активности по обратному закону.

ТЕРМОСФЕРА, слой атмосферы над мезосферой от высот 80-90 км, температура в котором растет до высот 200-300 км, где достигает значений порядка 1500 К, после чего остается почти постоянной до больших высот.

ЭКЗОСФЕРА (от экзо... и сфера) (сфера рассеяния), внешний слой атмосферы, начинающийся с высоты около 400-500 км, которые граничат с межпланетной средой. В этих слоях плотность настолько низка, что между атомами происходит очень мало столкновений и атомы, движущиеся с большой скоростью, могут выйти из сферы гравитационного притяжения планеты и улетать (ускользать) в космическое пространство.

Наконец, на расстояниях более 1000 км слой холодной плазмы высокой плотности (плазмосфера). Плазмосфера простирается до расстояний в 3 - 7 земных радиусов. Ее верхняя граница (плазмопауза) отмечена резким падением плазменной плотности. Большинство частиц в плазмосфере составляют протоны и электроны. газ настолько разрежен, что столкновения между молекулами перестают играть существенную роль, а атомы ионизированы более чем наполовину. На высоте порядка 1,6 и 3,7 радиусов Земли находятся первый и второй радиационные пояса.

Поля Земли

Гравитационное поле Земли с высокой точностью описывается законом всемирного тяготения Ньютона. Движение жидкостей, а также возникающие в твердых объектах напряжения, вызываемые циклическим изменением действующих на них гравитационных сил. Так, океанские приливы на Земле, запаздываемые ежедневно на 50 минут, возникают из-за изменения суммарного гравитационного действия Солнца и Луны, которое подвержено суточным, месячным и годичным вариациям, обусловленным вращением Земли, движением Луны по орбите вокруг Земли и движением Земли вокруг Солнца. Деформация за счет приливных сил Земли достигает 30см, Луны 40 см, водная поверхность поднимается до 1 метра, а в заливе Фапти (Атлантический океан) до 18 метров.

Ускорение свободного падения над поверхностью Земли определяется как гравитационной, так и центробежной силой, обусловленной вращением Земли. Зависимость ускорения свободного падения от широты приближенно описывается формулой g = 9,78031 (1+0,005302 sin2 ) m/c2, где m —масса тела.

Магнитное поле над поверхностью Земли складывается из постоянной (или меняющейся достаточно медленно) «главной» и переменной частей; последнюю обычно относят к вариациям магнитного поля. Наличие расплавленного металлического ядра приводит к появлению магнитного поля и магнитосферы Земли. Магнитосфера Земли определяется магнитным полем и его взаимодействием с потоками заряженных частиц космического происхождения (с солнечным ветром). Магнитосфера Земли с дневной стороны простирается до 8-14  R, с ночной — вытянута, образуя магнитный хвост Земли в несколько сотен  R; в магнитосфере находятся радиационные пояса. Измерения со спутников показали, что Земля является интенсивным источником радиоволн в километровом диапазоне, хотя такие волны генерируются высоко и на уровне земной поверхности не обнаружены. Магнитный дипольный момент Земли, равный 7,98·1025 единиц СГСМ, направлен примерно противоположно механическому, хотя в настоящее время магнитные полюсы несколько смещены по отношению к географическим. Их положение, впрочем, меняется со временем, и хотя эти изменения достаточно медленны, за геологические промежутки времени, по палеомагнитным данным, обнаруживаются даже магнитные инверсии, то есть обращения полярности. Нынешнюю полярность Земля приобрела 12 тысяч лет  (по другим источникам 750 тыс.лет) назад, а в среднем каждые 250 тыс.лет (500 тыс.лет по другим источникам) меняется полярность, а иногда в 2-4 раза быстрее. Некоторые ученые утверждают, что возможно скоро полярность изменится.

В первом приближении магнитное поле Земли подобно полю намагниченного стержня (диполя), который смещен относительно центра Земли к Тихому океану и наклонен к земной оси. В настоящее время это смещение составляет 451 км, а наклон равен 11°. Сила и форма геомагнитного поля постепенно меняются, причем масштаб времени этих изменений составляет годы. Интенсивность геомагнитного поля обозначается векторной величиной F или B, а единицами измерения являются гаусс (Гс), тесла (Т) или гамма (γ) (1 тесла = 10000 гаусс; 1 гамма = 1 нанотесла= 10-5 гаусс.) Направление поля в любой точке земной поверхности может быть описано двумя углами: 1) наклонением I , т.е. углом между горизонтальной плоскостью и вектором поля (угол считается положительным, когда поле направлено вниз); 2) склонением D, т.е. азимутом - углом, измеряемым от направления на север к востоку или западу на горизонтальной плоскости.

Положение магнитных полюсов Земли на 1985г:

Северный магнитный полюс – 77о36' с.ш.; 102о48' з.д.

Южный магнитный полюс    – 65о06' ю.ш.; 139о00' в.д.

Положение геомагнитных полюсов на 1985г:

Северный геомагнитный полюс – 78о48' с.ш.; 70о54' з.д.

Южный геомагнитный полюс    – 78о48' ю.ш.; 109о06' в.д.

Напряженности магнитного поля на северном и южном магнитных полюсах равны соответственно 0,58 и 0,68 Э, а на геомагнитном экваторе —около 0,4 Э.

Приборы Центрального военно-технического института Сухопутных войск (ЦНИВТИ СВ) зафиксировали в начале 2002 года, что магнитный полюс Земли сместился на 200 км. По мнению ученых, аналогичное смещение магнитных полюсов произошло и на других планетах Солнечной системы по видимому по причине, что Солнечная система проходит "определенную зону галактического пространства и испытывает влияние со стороны других космических систем, находящихся рядом".  "Переполюсовка" повлияла на ряд процессов, происходящих на Земле. Так, "Земля через свои разломы и так называемые геомагнитные точки сбрасывает в космос избыток своей энергии, что не может не сказаться как на погодных явлениях, так и на самочувствии людей". Кроме того избыточные волновые процессы, возникающие при сбросе энергии Земли, влияют на скорость вращения нашей планеты. По данным Центрального военно-технического института, "примерно каждые две недели эта скорость несколько замедляется, а в последующие две недели наблюдается определенное ускорение ее вращения, выравнивающее среднесуточное время Земли". Смещение магнитного полюса Земли не влияет на географические полюса планеты, то есть точки Северного и Южного полюсов остались на месте.

РАДИАЦИОННЫЕ ПОЯСА - внутренние области планетных магнитосфер, в которых собственное магнитное поле планеты удерживает заряженные частицы (протоны, электроны), обладающие большой кинетической энергией. В радиационных поясах частицы под действием магнитного поля движутся по сложным траекториям из Северного полушария в Южное и обратно. У Земли обычно выделяют внутренний и внешний радиационные пояса. Внутренний радиационный пояс Земли имеет максимальную плотность частиц (преимущественно протонов) над экватором на высоте 3-4 тыс. км, внешний электронный радиационный пояс — на высоте ок. 22 тыс. км. Радиационный пояс — источник радиационной опасности при космических полетах. Мощными радиационными поясами обладают Юпитер и Сатурн.

Электрическое поле над поверхностью Земли в среднем имеет напряженность около 100 В/м и направлено вертикально вниз —это так называемое «поле ясной погоды», но это поле испытывает значительные (как периодические, так и нерегулярные) вариации.

Van_Allen_Belts

Две кольцеобразные области вокруг Земли с высокой концентрацией высокоэнергичных электронов и протонов, которые были захвачены магнитным полем планеты. Пояса были обнаружены первым американским искусственным спутником Земли "Эксплорер-1", запущенным 31 января 1958 г. Пояса названы по имени Джеймса Ван Аллена - физика, руководившего экспериментом на "Эксплорере-1". Внутренний пояс Ван Аллена лежит над экватором на высоте около 0,8 земных радиусов. Во внешнем поясе область наибольшей концентрации находится на высоте от 2 до 3 земных радиусов над экватором, а обширная область, простирающаяся от внутреннего пояса до высоты 10 земных радиуса, содержит протоны и электроны более низкой энергии, которые, по-видимому, принесены в основном солнечным ветром. Поскольку магнитное поле Земли отклоняется от оси вращения планеты, внутренний пояс опускается вниз к поверхности в Южной части Атлантического океана, недалеко от побережья Бразилии. Эта Южноатлантическая аномалия представляет потенциальную опасность для искусственных спутников. В 1993 г. в пределах внутреннего пояса Ван Аллена была обнаружена область, содержащая частицы, которые проникли туда из межзвездного пространства.

геомагнитная буря - существенное уменьшение горизонтальной компоненты магнитного поля Земли, продолжающееся обычно несколько часов. Причина - попадание в околоземное пространство электрически заряженных частиц, как правило, выбрасываемых из Солнца при солнечных вспышках. Во время таких бурь наблюдаются полярные сияния и происходит нарушение радиосвязи.

История исследований

Начальный этап

Наиболее древние картографические изображения Земли созданы в Египте и Вавилонии в 3-1 тыс. до н. э. В 7 в. до н. э. в Месопотамии карты изготавливались на глиняных табличках. Чисто умозрительные представления об окружающем мире содержатся в источниках, оставленных народами Древнего Востока. Однако, в этот период представления о Земле в основном определялись мифами и легендами.

Ранняя античность (6-1 вв. до н. э.)

Наибольших достижений в этот период достигли ученые Древней Греции, стремившиеся дать представление о Земле в целом. Первую попытку создать карту всей Земли осуществил Анаксимандр, по мнению которого Земля представляет собой цилиндр (окруженный небесной сферой), вокруг морского бассейна располагается суша, в свою очередь, опоясанная водным кольцом. Одна из первых географических работ —«Землеописание» Гекатея Милетского сопровождалась, по-видимому, географической картой, на которой кроме Европы и Азии, были показаны известные древним грекам моря: Средиземное, Черное, Азовское, Каспийское, Красное. Гекатей впервые ввел понятие ойкумены. Между 350 и 320 до н. э. Питеас (Пифей) достиг берегов Западной Европы, открыв Британские и Ирландские острова. Ему принадлежит верное наблюдение о связи приливов и отливов в океане с движениями Луны.

Предположение о шарообразности Земли впервые, по-видимому, было сделано Пифагором. Опытные мореплаватели, древние греки, обратили внимание на то, что при приближении корабля к наблюдателю сначала видны паруса и только потом весь корабль, что свидетельствовало о сферичности планеты. В развитие этих представлений Гераклитом была высказана идея о вращении Земли вокруг своей оси. В 340 до н. э. в книге «О небе» Аристотель привел доказательства шарообразности Земли: при лунных затмениях Земля всегда отбрасывает на Луну круглую тень, а Полярная звезда в северных районах располагается выше над горизонтом, чем в южных. Оценив разницу в кажущемся положении Полярной звезды в Греции и в Египте Аристотель вычислил длину экватора, которая, однако, оказалась примерно вдвое больше реальной.

Впервые достаточно точно диаметр земного шара определил Эратосфен на основе простого опыта —по разнице высоты Солнца в городах Сиена и Александрия, лежащих на одной полуденной линии, и расстоянию между ними. Измерение выполнялось во время летнего солнцестояния, вычисленная длина диаметра отличалась от действительной только на 75 км. Геометрические принципы, которыми он пользовался, легли в основу градусных измерений Земли. Почти все труды этого ученого не сохранились, о них известно по трудам более поздних греческих авторов.

Во 2 в. до н. э. древнегреческими учеными были введены понятия географической широты и долготы, разработаны первые картографические проекции, на которых показывалась сетка параллелей и меридианов, предложены методы определения взаимного расположения точек на земной поверхности.

Античные ученые обратили внимание на изменение поверхности Земли с течением времени в результате действия воды и внутренних сил Земли, особенно вулканических процессов. Эти идеи позднее легли в основу геологических концепций нептунизма и плутонизма.

Поздняя античность (1-2 вв.)

В первые десятилетия 1в утвердилась идея о шарообразности Земли. Уровень знаний об окружающем мире этого периода характеризует выдающийся труд Плиния Старшего «Естественная история» в 37 книгах, содержащая сведения по географии, метеорологии, ботанике, минералогии, а также истории и искусству.

Своеобразным итогом географических знаний античности служит «География» Страбона в 17 книгах, где довольно подробно описаны Кавказ и Боспорское царство. Книга должна была служить практическим пособием для полководцев, мореплавателей, торговцев и поэтому содержала многочисленные бытовые и исторические сведения. Страбон высказал мнение о том, что в неизвестном океане между западной оконечностью Европы и Восточной Азией вероятно лежат несколько континентов и островов. Не исключено, что это предположение было известно Х. Колумбу.

Во 2 в. Птолемей в труде «География» дал сводку географических сведений, включающую карту мира и 16 областей Земли. Он уже высказал предположение о центральном положении Земли во Вселенной (геоцентрической системе мира). В этот период наряду с правильными представлениями, основанными на открытиях ученых, путешественников и купцов, были распространены легенды о неизвестных или исчезнувших областях и странах, например Атлантиде.

Средние века (конец 8-14 вв.)

В 8-10 вв. викинги, совершавшие завоевательные походы, открыли Гренландию и первыми из европейцев достигли Северной Америки (так называемую страну Винланд, Маркланд, Хелуланд). В 9-11 вв. исследования неизвестных для европейцев земель, выполненные арабскими учеными и путешественниками (Масуди, Мукаддаси, Якуби), стали важным источником для изучения Востока. Бируни первым на Среднем Востоке предположил, что Земля движется вокруг Солнца. Он привел много интересных для своего времени топографических и географических наблюдений, а также геологических и минералогических сведений. В 12-13 вв. путешествия Плано Карпини и Марко Поло позволили составить представление о Центральной, Восточной и Южной Азии.

Великие географические открытия (15 —середина 17 вв.)

Усовершенствование приборов, позволявших ориентироваться в океане (компас, лаг, астролябия), создание морских карт, а также потребность в новых торговых связях, способствовали Великим географическим открытиям. Результаты этих открытий окончательно прояснили вопрос о шарообразности земли, прямым доказательством которой послужило кругосветное путешествие Ф. Магеллана в начале 16 в. Плавания Х. Колумба, Васко да Гамы, А. Веспуччи и других мореплавателей в Мировом океане, путешествия русских землепроходцев в Северной Азии позволили установить контуры материков, а также описать большую часть земной поверхности, животный и растительный мир Земли. В этот же период предложенная польским ученым Н. Коперником гелиоцентрическая система мира ознаменовала начало новой эпохи в естествознании.

Научный этап исследования Земли

Первый период (17 —середина 19 вв.)

Этот этап характеризуется широким использованием физических, математических и инструментальных методов. Открытие И. Ньютоном закона всемирного тяготения во второй половине 17 в. привело к возникновению идеи о том, что Земля представляет собой не идеальный шар, а сплющенный у полюсов сфероид. Исходя из предположений о внутреннем строении Земли и основываясь на законе всемирного тяготения, Ньютон и Х. Гюйгенс дали теоретическую оценку величины сжатия земного сфероида и получили столь различные результаты, что возникли сомнения в справедливости гипотезы о земном сфероиде. Чтобы рассеять их, Парижская Академия наук в первой половине 18 в. направила экспедиции в приполярные области Земли —в Перу и Лапландию, где были выполнены градусные измерения, подтвердившие верность идеи о сфероидичности Земли и закона всемирного тяготения.

Р. Декарт и Г. Лейбниц впервые рассмотрели Землю как развивающееся космическое тело, которое первоначально было в расплавленном состоянии, а затем охлаждалось, покрываясь твердой корой. Расплавленная Земля была окутана парами, которые затем сгустились и создали Мировой океан, его воды частично ушли в подземные пустоты, создав сушу. Возникновение гор на Земле Р. Гук, Г. В. Рихман и другие связывали с землетрясениями, либо с вулканической деятельностью. М. В. Ломоносов также объяснял образование гор «подземным жаром».

Открытия, исследования и идеи 17 —первой половины 19 вв. подготовили почву для возникновения комплекса наук о Земле. К важнейшим из них относится, в частности, открытие У. Гильберта, заключающееся в том, что Земля в первом приближении является элементарным магнитом. Ломоносов предположил, что значение силы тяжести на земной поверхности определяется внутренним строением планеты. Он же одним из первых предпринял попытку измерить вариации ускорения силы тяжести, а также совместно с Г. В. Рихманом исследовал атмосферное электричество. В этот же период была развита теория маятника, на основе которой стали производиться достаточно точные определения силы тяжести, разработаны метеорологические приборы для измерения скорости ветра, количества осадков, влажности воздуха. А. Гумбольдт установил, что напряженность земного магнетизма меняется с широтой, уменьшаясь от полюса к экватору, разработал представления о закономерном распределении растительности на поверхности Земли (широтная и высотная зональность). Он одним из первых наблюдал магнитную бурю и обобщил накопившиеся к первой четверти 19 в. данные о строении Земли. Для изучения прохождения в земле сейсмических волн Малле в 1851 осуществил первое искусственное землетрясение (взрывая порох и наблюдая распространение колебаний на поверхности ртути в сосуде). В 1897 Э. Вихерт, основываясь на результатах изучения состава метеоритов и распределении плотности в недрах планеты, выделил в Земле металлическое ядро Земли и каменную оболочку. В этот период установлена возможность определения относительного возраста пород по сохранившимся в них остаткам флоры и фауны, что позволило позднее построить геохронологическую шкалу, осуществить палеореконструкции положения материков и океанов в разные геологические эпохи, изучать историю геологического развития Земли.

Второй период (середина —конец 19 в.)

В это время происходило углубление знаний о строении нашей планеты на основе развивающихся магнитного, гравиметрического, сейсмического, электрического и радиометрического методов геофизики. Среди геологов получила широкое распространение контракционная гипотеза. В 1855 английский астроном Эйри высказал предположение о равновесном состоянии земной коры (изостазии), подтвердившееся в 20 в. при изучении глубинного строения гор, когда было установлено, что более высокие горы имеют более глубокие корни.

Третий период (первая половина 20 в.)

Начало века было отмечено крупными успехами в исследовании полярных областей Земли. В 1909 Р. Пири достиг Северного полюса, в 1911 Р. Амундсен—Южного. Норвежские, бельгийские, французские и русские путешественники обследовали приполярные области, составили их описания и карты. Позднее начато планомерное изучение этих областей с помощью антарктических научных станций и дрейфующих обсерваторий «Северный полюс». В первой половине 20 в., благодаря дальнейшему усовершенствованию геофизических методов и, особенно, сейсмологии, были получены фундаментальные данные о глубинном строении Земли. В 1909 А. Мохорович выделил планетарную границу раздела, являющуюся подошвой земной коры. В 1916 сейсмолог Б. Б. Голицын зафиксировал границу верхней мантии, а в 1926 Б. Гутенберг установил в ней наличие сейсмического волновода (астеносферы). Этот же ученый определил положение и глубину границы между мантией Земли и ядром. В 1935 Ч. Рихтер ввел понятие магнитуды землетрясения, разработал совместно с Гутенбергом в 1941-45 Рихтера шкалу. Позднее на основе сейсмологических и гравиметрических данных была разработана модель внутреннего строения Земли, которая остается практически неизменной до наших дней.

Начало 20 в. ознаменовалось появлением гипотезы, которой в дальнейшем было суждено сыграть ключевую роль в науках о Земле. Ф. Тейлор (1910), а вслед за ним А. Вегенер(1912) высказали идею о горизонтальных перемещениях материков на большие расстояния (дрейфе материков), подтвердившуюся в 1960-х гг. после открытия в океанах глобальной системы срединно-океанических хребтов, опоясывающих весь земной шар и местами выходящих на сушу (см. Рифтов мировая система). Выяснилось также, что земная кора под океанами принципиально отличается от континентальной коры, а мощность осадков на дне увеличивается от гребней хребтов к их периферии. Были закартированы аномалии магнитного поля океанского ложа, которые имеют удивительную, симметричную относительно осей хребтов структуру. Все эти и другие результаты послужили основанием для возврата к идеям дрейфа континентов, но уже в новой форме —тектоники плит, которая остается ведущей теорией в науках о Земле.

Значительный объем новой информации, особенно о строении атмосферы, был получен в результате исследований глобальных геофизических процессов во время максимальной солнечной активности, проводившихся в рамках Международного геофизического года (1957-58) учеными 67 стран.

Архивы
Календарь
Апрель 2017
Пн Вт Ср Чт Пт Сб Вс
« Фев    
 12
3456789
10111213141516
17181920212223
24252627282930